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ABSTRACT 
 
 Regression analysis is one of the most common statistical techniques used for measurement and 
verification of savings from energy-efficiency programs. Using panel data (cross-sectional time series), 
evaluators have used regression models to derive estimates of gross and/or net savings in a variety of 
research designs and specifications. This paper is about the application of regression analysis for 
assessing savings in the commercial sector. Using data from BC Hydro’s Power Smart Partners 
Program, it demonstrates the effects of large variances in annual consumption on parameters derived by 
Ordinary Least Squares (OLS) and the accompanying problem of heteroscedasticity. Using visual 
inspection of data and statistical tests, the paper examines the presence and extent of heteroscedasticity 
and applies two alternative methods to correct for the problem: 1) assigning a unique intercept to each 
facility (fixed-effects model); and 2) by transforming all to deviations from individual facility means 
(deviation model). The results show both models’ specifications are effective means of correcting for the 
problem, though, depending on the heterogeneity of the participant population, some tolerable degree of 
heteroscedasticity may remain.  The one disadvantage of the fixed-effects model is that, by 
incorporating unique intercepts for each facility, it significantly limits the degrees of freedom.   
 
Program Background 
 

BC Hydro’s demand-side management (DSM) programs are planned, implemented and managed 
through the Power Smart organization. The Power Smart Partner Program (PSP) is the organization’s 
flagship program. It has been one of the largest, most active and successful demand-side management 
initiatives in North America and is regarded as one of the best energy efficiency programs in its class. 
Through a unique alliance arrangement with vendors and suppliers and partnering agreements with 
commercial, governmental and industrial customers, PSP offers a combination of energy-efficiency 
resource acquisition and market transformation services. It relies on education, technical assistance, 
financial incentives and credits for self-directed energy management practices to bring about lasting 
change in the market. PSP participants are also offered an “e-Points” bonus, which is designed to 
recognize and reward the largest commercial and industrial customers who achieve a minimum of 5% in 
aggregate electrical efficiency improvement across all of their accounts.  

Since its launch in April 2002 through March 2005, PSP had succeeded in establishing over 460 
partnerships that have produced nearly 700 GWh of cost-effective savings, exceeding the program’s 
target by over two folds at approximately 80% of the expected cost. The program’s annual savings goals 
through 2011 are expected to increase to a level equivalent to nearly one-half of the identified 
achievable potentials in BC Hydro’s non-residential sector. Net evaluated energy savings for the PS 
Partner business program, based on the analyses described here, were 210 GWh/yr as of March 2005. 
By March 2007 the PS Partner commercial program reported 320 GWh/yr net energy savings. This 
paper describes some of the lessons learned in assessing the impacts of the program using regression 
techniques to analyze panel data.    
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Methodology Overview 
 
Regression analysis is a staple of impact evaluation techniques. It has been widely (and 

effectively) used in analyses of consumption history (billing analysis) to estimate savings from energy-
efficiency programs. Evaluators have used ordinary least squares (OLS) regression techniques, typically 
with panel data, to estimate “gross” and/or “net” savings from conservation programs using a broad 
range of specifications, including conventional demand analysis, “conditional” demand analysis, and 
combined statistical and engineering (SAE) models, among others.  

The large body of energy-efficiency impact evaluation research suggests regression analysis is 
generally more effective and OLS is likely to produce better and more reliable results in the residential 
and small commercial sectors. This is mainly because of greater homogeneity in these populations and 
that annual consumption tends to be distributed normally, with a relatively small variance. In the 
commercial sector, on the other hand, where large variations in annual consumption—and annual 
savings—are expected, OLS estimators tend to be less reliable (or efficient) as the variance in the 
regression residuals tend to increase with annual consumption—a condition known as 
heteroscedasticity.1 

Constant error variance, or homoscedasticity, is one of the basic assumptions underlying 
conventional normal linear regression models.2 The assumption simply means the regression error terms 
(regression residuals) are normally distributed with a constant variance, that is: Var(εj) = σ2 for all j. If the 
error terms do not have constant variance, they are said to be heteroscedastic. The problem with 
heteroscedastic disturbances is OLS estimation places a greater “weight” on observations which have 
larger error variances than on observations with small ones. Because of this implicit weighing, OLS 
parameter estimates remain unbiased and consistent, but they may no longer be “efficient.”3 

Errors may increase as the value of the dependent variable increases. The effect of annual 
income on discretionary expenditures (such as vacations) is the classical example of heteroscedasticity. 
Families with high incomes tend to spend more on vacation simply because they have greater 
discretionary incomes; more importantly, there will be greater variability among such families. In the 
case of large commercial buildings, error terms associated with very large facilities might have larger 
variances than error terms associated with smaller ones, and larger facilities might have more variability 
in their energy consumption—and potential savings. In addition to normal variations in the dependent 
variable, the problem may also arise as a result of a sampling strategy or measurement error. 

Several methods are available to correct for heteroscedasticity. Clearly, better sample 
stratification is the simplest way to remove (or reduce) heterogeneity in the sample. When using panel 
(cross-sectional/time-series) data, alternative regression specification may also be used to address 
heteroscedasticity. These approaches rely on different estimation procedures that fall in the category of 
Generalized Least Squares (GLS).  In some cases, large variations in the independent variable may be 
controlled by simply transforming the variable (e.g., using energy consumption per square foot instead 
of total consumption) or by expressing the values of variables in terms of deviations from the mean. It is 
also possible to apply a weighted least squares estimator, where observations expected to have error 
terms with large variances are given a smaller weight than observations thought to have error terms with 

                                                 
1 Note that the problem is simply more acute – and by no means limited to - the large commercial sector.    
2 Discussions of heteroscedasticity, its causes, and methods for correcting it are found in all econometric text books. This 

description is mainly based on discussion of the topic in Robert S. Pindyck and Daniel Rubinfeld, Econometric Models 
and Economic Forecasts, Second Edition, McGraw-Hill, 1981, Chapter 6; and Judge, George G. et al, The Theory and 
Practice of Econometrics, Second Edition, John Wiley & Sons, 1985, Chapter 11.   

3 Recall that in the classical normal linear regression models estimated parameters are assumed to be unbiased and efficient. 
Since variances of error terms do not play a role in establishing absence of bias in least square estimates, 
heteroscedasticity does not affect the bias of the estimated parameters. 
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small variances. Finally, one might use a “fixed-effects” model, in which each observation is assigned a 
unique intercept, thus capturing some of the variation in total consumption.  

In the present analysis, two alternative approaches were tested through an analysis of covariance 
to reduce “within” facility fluctuations in consumption by: 1) assigning a unique intercept to each 
facility (fixed-effects model); and 2) transforming all to deviations from individual facility means 
(deviation model).4   

 
The Data 
 
 To explore the appropriateness and effectiveness of various procedures to correct for 
heteroscedasticity, panel data were assembled for 139 completed large commercial customers. One of 
the primary objectives in the evaluation was to examine the effectiveness of particular groups of 
measures through estimating unique savings realization rates for each. An SAE model was thus the 
appropriate specification.   

Three alternative specifications were used. In all three cases, average daily electricity 
consumption during each billing cycle was set as the dependent variable, and engineering estimates of 
expected savings for lighting and other energy-efficiency measures, and heating degree days were the 
primary covariates. Preliminary screening of the data revealed wide variation in the dependent variable. 
Total annual consumption across facilities ranged from 8,000 kWh to 15,300,000 kWh. In the 1st 
quartile of cases, total usage ranged from 8,000 to 200,000 kWh, and, in the 4th quartile, it ranged from 
1,300,000 to 15,300,000 kWh. Therefore, it was expected heteroscedasticity would in all likelihood be a 
problem. The analysis began with a conventional SAE model with the following specification:  
 
1) Ordinary least squares:   ADC it = α + β1LIGHTINGEEi + β2OTHEREEi + λ1HDDit + ε it 
 

Where, for each facility i and calendar month t,  

• ADCit is the average daily kWh consumption during the pre- and post-participation periods for 
participants 

• α is the intercept  

• LIGHTINGEEit is the initial engineering estimate of lighting savings, appears in the estimation 
only during the post-participation period, and takes on the value of 0 in the pre-program period  

• OTHEREEit is the initial engineering estimate of other measure savings, appears in the 
estimation only during the post-participation period, and takes on the value of 0 in the pre-
program period 

• β1 and  β2 represent savings realization rates for lighting and other measures, respectively; a 
value of -1 represents a 100% realization rate  

• HDDit is average daily heating degree days based on facility location 

• εit is the error term 
 

The model coefficients and standard statistics for the OLS model are summarized in Table 1. As 
can be seen for the standard regression model, the model fit is weak with an R2 of 0.17. The 

                                                 
4 It is important to note that the fixed-effects and the deviation models are mathematically identical. A proof of this is found 

in William H. Greene, Econometric Analysis, Macmillan, 1993 pp. 466-468.   
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LIGHTINGEE coefficient of 3.66 indicates the program realized 366% of the lighting measure 
engineering estimated savings. Similarly, the coefficient for the OTHEREE variable is estimated at 2.8, 
indicating the program realized 280% of estimated savings for the “other” measure category. The 
weather coefficient has the wrong sign. Clearly, in addition to its overall poor performance, estimated 
parameters do not even carry the correct signs in this model.   
 

Table 1: Ordinary Least Square (Model 1) Estimation Results 

Analysis of Variance 
Source DF Sum of 

Squares 
Mean  

Square F Value Pr > F 

Model 3 27304847925 9101615975 234.26 <0.0001 
Error 3325 129184800000 38852578   
Corrected total 3328 156489700000    
Root MSE 6233.18363 R-Square 0.1745 
Dependent Mean 3800.25688 Adj. R-Square 0.1737 

Parameter Estimates 
Source DF Parameter 

Estimates 
Standard 

Error t value Prob. t 

Intercept 1 2903.08334 196.55147 14.77 <0.0001 
LIGHTINGEE 1 3.66044 0.14045 26.06 <0.0001 
OTHEREE 1 2.782 0.51565 5.4 <0.0001 
HDD 1 -1.33581 10.09369 -0.13 0.8947 

 
An examination of the plot of actual values against predicted values for this model (Figure 1) 

clearly demonstrates the inaccuracy of the predicted values. As shown, the predictions also “fan-out” as 
usage increases. Similarly, the model is plagued by differences in predictions even for the same level of 
actual consumption. The distribution of residuals in this model clearly indicates a strong relationship 
between the dependent variable and regression residuals, consistent with the presence of 
heteroscedasticity. The presence of strong heteroscedasticity was corroborated through the application of 
the White test. See end notes for a complete description of the White test. Given the overall poor 
performance of the OLS model, two variations of the GLS of estimators were used to improve the 
performance of the model and to address heteroscedasticity. The two specifications are shown below. 

 
2) Fixed-effects model:  ADC it = αi + β1LIGHTINGEEit + β2OTHEREEit + λ1HDDit + ε it 

3) Deviation model:  ADC*
it   = β1LIGHTINGEE*

it + β2OTHEREE*
it + λ1HDD*

it + ε it 
 
In the fixed effects model, each facility is treated as a separate case with its own unique intercept (αi). In 
model three, the asterisk indicates all variables are converted to deviations from their means; that is, for 
each variable V in facility i, Vi, Vi* = Vi- (Mean Vi).  Given the differences among facilities with 
respect to customer sector, facility type and size, and measures installed, this technique better captures 
the unique characteristics of individual sites that affect electricity use and, hence, savings.  
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Figure 1.  Comparison of Actual and Predicted Values for Daily Consumption from OLS 
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The results summarized in Table 2 show a significant improvement in the estimated parameters; 

all now have the correct signs and are statistically significant. (Note that high R2 of 0.99 does not reflect 
a strong performance in this case. Indeed, the conventional interpretation of R2 does not apply because 
there is no intercept in the model. It is also important to note this model produces 139 intercepts; 
however, only the average of these is reported.) The coefficients in this model represent savings 
realization rates for each measure group. For example, the coefficient of -0.77 on the LIGHTINGEE 
variable indicates 77% of the expected savings from lighting measures were realized. 
 

Table 2:  Fixed Effects (Model 2) Estimated Parameters 

Analysis of Variance 
Source DF Sum of 

Squares 
Mean  

Square F Value Pr > F 

Model 142 202204400000 1423974717 1920.92 <0.0001 
Error 3187 2362519787 741299   
Corrected total 3329 204566900000    
Root MSE 860.9872 R-Square 0.9885 
Dependent Mean 3800.25688 Adj. R-Square 0.9879 

Parameter Estimates 
Source DF Parameter 

Estimates 
Standard 

Error t value Prob. t 

Intercept 139 3844.831936 178.662192 21.03 <0.0001 
LIGHTINGEE 1 -0.77117 0.02649 -29.11 <0.0001 
OTHEREE 1 -0.90925 0.09623 -9.45 <0.0001 
HDD 1 11.39741 1.45949 7.81 <0.0001 

 
Estimation results for the deviation model (3) are reported in Table 3. As in the fixed-effects 

model, the R2 is not directly interpretable. Also, note that the mean of the dependent variable now equals 
0. It should be noted that all estimated parameters have identical values to the fixed-effects model (2). 
The plot of actual versus predicted for models 2 and 3, as shown in Figure 2, indicate a significantly 
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better predictive performance compared to the OLS model. As evident in the scatter plot, the “fanning” 
pattern in the distribution of the residuals is also markedly diminished, and the error terms appear to be 
distributed evenly around zero (Figure 3). The White test results also suggest an improvement in 
heteroscedasticity (see endnote 2). 
 

Table 3:  Deviation Model (Model 3) Estimated Parameters 

Analysis of Variance 
Source DF Sum of 

Squares 
Mean  

Square F Value Pr > F 

Model 3 774112733 258037578 363.27 <0.0001 
Error 3326 2362519787 710319   
Corrected total 3329 3136632521    
Root MSE 842.80403 R-Square 0.2468 
Dependent Mean -5.46E-16 Adj. R-Square 0.2461 

Parameter Estimates 
Source DF Parameter 

Estimates 
Standard 

Error t value Prob. t 

LIGHTINGEE 1 -0.77117 0.02593 -29.74 <0.0001 
OTHEREE 1 -0.90925 0.09419 -9.65 <0.0001 
HDD 1 11.39741 1.42866 7.98 <0.0001 

 
 

Figure 2.  Comparison of Actual and Predicted Values for Daily Consumption – Fixed-Effects  
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Figure 3.  Comparison of Predicted Values and Residuals for Daily Consumption – Fixed-Effects  
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These analyses results have shown the use of OLS estimator is inappropriate for estimating the 
parameters of savings models in the large commercial sector.  Application of the OLS estimator resulted 
in coefficients with large standard errors, incorrect signs for all coefficients, and serious problems with 
heteroscedasticity. The GLS estimators, both in the form of fixed-effects or deviation, significantly 
improved the statistical properties of the estimated parameters in terms of direction of effect and 
efficiency. Both visual inspection and application of the White test indicated some degree of 
heteroscedasticity remained. However, the GLS was shown to significantly reduce heteroscedasticity 
and result in more robust parameters.  
 
Endnotes 
 

1. First, we estimate model 1. From the model estimation, we output the residuals. Then the 
squared residuals are run as a dependent variable against an equation that includes all Xs, X2s, and the 
product of each pair of Xs. In effect, this involves running the following model:  
 
(1b) ε it

2= λ + δ1LIGHTINGEEi + δ2LIGHTINGEEi
2 + δ3OTHEREEi + δ4OTHEREEi

2 + δ5HDDit + δ6HDDit
2 + 

δ7LIGHTINGEEi *OTHEREEi + δ8LIGHTINGEEi * HDDit  + δ9OTHEREEi * HDDit   + φ it 
 
According to the White test, the test statistic is NR2. This is compared to the critical value distributed as 
= 2

,1 αχ −p , where p is the number of covariates. In this case the critical value is χ2 (df = 10-1=9) [the 
number of degrees of freedom is determined by the number of independent variables in the model 
including the squared terms and cross product terms] or 16.92 at the upper 5% percent level. NR2 = 
119.20, which is greater than χ2(9) = 16.92; hence, we can conclude heteroscedasticity is present in the 
model. 
 
 2. First, we estimate model 3. [Note that computationally it would have been very tedious to 
obtain the White statistic for model 2. The SAS procedure actually failed to complete the computation, 
because of insufficient memory due to all of the combinations of the separate facility intercepts and the 
other independent variables.] From the model estimation, we output the residuals.  Then the squared 
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residuals are run as a dependent variable against an equation that includes all Xs, X2s, and the product of 
each pair of Xs. In effect, this involves running the following model: 
 
(3b) ε it

2=  δ1LIGHTINGEE*
i + δ2LIGHTINGEE*2

i + δ3OTHEREE*
i + δ4OTHEREE*2

i + δ5HDD*
it + δ6HDD*2

it  + 
δ7LIGHTINGEE*

i *OTHEREE*
i + δ8LIGHTINGEE*

i * HDD*
it  + δ9OTHEREE*

i * HDD*
it + φ it 

 
In this case, the critical value is χ2 (df = 9-1=8) or 15.51 at the upper 5% percent level. The test statistic 
NR2 = 34.70 is still greater than the critical value of χ2 (8) = 15.51; hence, we conclude 
heteroscedasticity is present in the deviation model. 
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