

Accounting for Real-Life Conditions in Mini-Split Heat Pump Savings Findings from a Billing Analysis

Marie-Claude Hamelin, Econoler

2017 IEPEC Conference — Baltimore, Maryland

Our Problem in Two Graphs

 Green Heat, a residential heating program by Efficiency <u>Nova Scotia</u>

Solutions in Technical Literature

$$ES_{kWh} = \frac{HC * \left[\frac{1}{HSPF_{base}} - \frac{1}{HSPF_{ee}}\right] * EFLH_h + \frac{1}{SEER_{base}} - \frac{1}{SEER_{ee}} \right] * EFLH_c}$$

- Most jurisdictions use an EFLH formula
- EFLH values based on: AHRI standard, weather bin analysis, energy modeling
- Metering studies seem to indicate that real operating conditions result in lower EFLH than anticipated.

Our Solution: Billing Analysis

 Possible because MSHPs replace electrical resistance heating

Based on comparing pre and post-installation

periods

$$CONS = \alpha + \beta \times HDD + \varepsilon$$

Sorting Out Data

- Sufficient data for 126 participants
- Using statistical criteria to exclude biased data

- Non-statistically significant coefficient β for either the pre or post period
- Negative daily base consumption constant α
- Adjusted R2 below 0.65
- Outlier savings value (beyond 2 times standard deviation)
- Valid results

Findings: Average Savings

Savings calculated in absolute or per installed capacity

	Energy Savings	Energy Savings per Installed Capacity
Mean	3,671 kWh	0.180 kWh/Btu/h
Standard Deviation	3,150 kWh	0.147 kWh/Btu/h
90% Confidence Interval	±601 kWh	±0.028 kWh/Btu/h
Relative Uncertainty	±16.4%	±15.6%

Findings: Impact of Secondary Systems

	Energy Savings		Energy Saving Capacity	s per Installed
Secondary N- Elect. System?	YES	NO	YES	NO
n	27	47	27	47
Mean	2,800 kWh	4,170 kWh	0.124 kWh/Btu/h	0.212 kWh/Btu/h
Standard Deviation	3,630 kWh	2,760 kWh	0.148 kWh/Btu/ h	0.139 kWh/Btu/ h
90% Confidence Interval	±1,190 kWh	±660 kWh	±0.048 kWh/Btu /h	±0.033 kWh/Btu /h
Relative Uncertainty	±42%	±16%	±39%	±16%

Findings: Comparing Savings and EFLHs

$$EFLH_{h} = \frac{ES_{kWh}}{HC * \left[\frac{1}{HSPF_{base}} - \frac{1}{HSPF_{ee}}\right]}$$

Average Energy Savings	Average Pre- Installation Variable Elect. Consumption	% of Variable Elect. Consumption Saved	EFLH Heating
3,671 kWh	12,186 kWh	30%	890 h

■ Average HSPF_{ee}: 10.63 → Equivalent to 67% reduction in energy consumption for heating over electrical resistance

Conclusions

- Method successful in improving previous estimate of energy savings values
- Provided more evidence that EFLH methods overestimated savings
- Showed impact of non-electrical secondary heating systems on savings

Thank you!

Marie-Claude Hamelin mchamelin@econoler.com

