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Introduction

A distinguishing feature of sample design and re­
search planning for DSM impact evaluation is the com­
plexity introduced by the range of accuracy and cost
associated with measuring the parameter of interest.
Traditional sampling studies account for bias implicitly
with a valid sample design. Where significant discrepan­
cies between measured and actual impacts are identified
for some evaluation methods, the application takes on a
decision dimension: how do the alternatives compare on
the basis of sampling costs and attainable accuracy, and
how are these weighed to arrive at the most cost-effective
research plan?

A recent scoping study, sponsored by eight New
York utilities and performed by XENERGY, examined
alternative evaluation methods to quantify their cost and
accuracy characteristics. Costs were defined by marginal
sampling cost, and accuracy by the identifiable bias un­
controlled for with the sampling process. In this study,
four impact evaluation methods (end-use metering, closed­
form engineering models, building simulation models, and
hybrid statistically-adjusted engineering models) were
analyzed on the basis of these criteria. Quantification of
cost and accuracy was obtained for each method by
building type, producing scatterplots depicting the under­
lying tradeoffs. This paper presents a review of the ana­
lytic methodology and a discussion of major findings.

The following are the evaluation (impact estimation)
methods under study:

1. End-use metering: hourly end-use metering offacility
electric usage. Several levels of metering can be
pursued (single point, multiple points, multiple end
uses, and so on). At a minimum, we refer to metering
all loads for significant end uses.

2. Engineering building simulation models: an algo­
rithmic model of hourly end-use loads based on
engineeringjudgment, equipment stock, operational!
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behavioral parameters, and weather data. We make
the distinction between engineering simulation models,
which generate hourly loadshapes by end use and
closed- form savings models, which identify impacts
basedon delta watts, full load hours, and other inputs
(see 4 below). The former type models can be struc­
turedto develop beforeand afterend-use loadshapes,
and thus can be considered equivalent to savings
models in this sense.

3. Hybrid Statistical/Engineering (HSEM) Methods:
an engineering model that is adjusted for biases
inferred in end-use models by analyzing regression
coefficients for hourly total building loads (on end
use load estimates). The statistical adjustment is
based on whether loads are systematically over-es­
timatedlunder-estimated as inferredbyregressionby
building type. The adjustment requires hourly total
building loads to be known (see Ref. 1).

4. Engineering Tracking Models: a closed-form single­
equation model of end-use load impacts based on
engineeringjudgmenl Significantparametersofmodels
are delta watts, full load hours, diversity and coin­
cidence factors. Other factors are often developed to
account for persistence, free ridership, snapback,
and so on.

Upon review, concerns among several diverse inter­
ests have focused on the conspicuous absence of billing
or statistical analyses among the methods considered
here for assessment. We address these concerns prior to
providing details of the study. Both our understanding of
the merits and efficacy of billing/statistical analysis and
their exclusion from the framework to be presented are
based on considerable experience and review ofongoing
research in this area. In our experience, billing analysis
categorizes a range of analyses whose common thread is
the use of metered billing information.

This common thread has borne several types of
analysis that rely on the explanation or modeling of load
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levels over time. Use ofbilling data can be as elementary
as tests for significantdifferences (over time) on weather­
normalized loads within an experimental design. These
and more elaborate methods (conditional demand, con­
strained change, or HSEMs), all fundamentally attempt
to explain or model known load levels (bills). In terms of
relative explanatory power and in the purest sense, these
methods can be considered equivalent. A linear con­
strained change model could be developed to emulate an
engineering or HSEM model, given identical input data
and information on the functional form of the models;
conversely, an engineering model could incorporate sig­
nificant independent variables to emulate the change or
conditional demand models.

Practically, however, the types of models described
rarely resemble one another and the lack of abundant,
high quality data leaves the assessment of relative ef­
ficacy indeterminate. We have found hybrid statistical/
engineering modeling to be a sensible, reviewable, and
reproducible approach to utilizing billing data for a vari­
ety of purposes. This is not the sole approach the authors
condone or use, but, in designing for propitious use of
billing data for evaluation, we fmd that it meets some
important criteria absent in other methods.

Typically, billing analyses are performed with
monthly bills rather than hourly load data by type ofday.
Numerous studies have confirmedpatterns in variance of
end-use loads by hour ofday. Arequirement for the study
under review and one common to evaluation research is
the assessment of estimation techniques which specifi­
cally considered coincident peak: hour impacts. Modeling
monthly billing demand by any method provides only
estimated non-coincident demand impacts, neglecting
the explanatory power of calibration to hourly load data.

Defining the Frontier: Cost and Risk

Astarting point in quantifying the tradeoffs presented
by the various measurementmethods involves specifying
the criteria for assessment Among the candidates for
quantification are: sample sizes, precision/confidence,
bias, total absolute error, total sampling costs, total eval­
uation program cost, and total or marginal cost as a
percent of avoided cost.

Cost

The above list in fact defmes a relatively limited
universe ofcriteria. For instance, total sampling costs are
a function ofprecision and confidence require~ents, the
sample sizes these requirements entail, and the sampling
cost per unit Assuming that marginal sampling costs per
unit are fIXed, imposing some precision/confidence con­
stmint results in a range of total cost associated with the
evaluation methods. Conversely, if total sampling cost is
the constraint, the methods represent a rangeofattainable
precision. In effect, the precision/confidence and sam­
pling costcriteria mirror one another--choosing the con­
stmint defmes the criteria. (See Table 1).

In order for cost to be defined as the constraint, some
conventions are necessary. Are costs defined as total
evaluation program cost, total cost per kWh/kW saved,
or cost per kWh/kW saved relative to avoided cost? To
avoid the ambiguities in using such "subjective" criteria,
precision/confidence has been defined as the constraint
(90/10) with marginal per unit sampling costs applied to
resultant sample size requirements to derive a measure of
"variable" program evaluation costs.

Risk

With precision/confidence and sampling costs taken
into consideration, a further aspect requiring quantifica-

Constraint

Table 1. Hypothetical Sampling Cost/Precision Tradeoff

Criteria

Precision =±10%

Cost =$30/MWh

Cost:

Precision:

Engineering (Tracking)
Engineering (Simulation)
HSEM
End-use Metering
Engineering (Tracking)
Engineering (SimUlation)
HSEM
End-use Metering

$10/MWh
$20/MWh
$25/MWh
$50MWh

±5°k
±10%
±15%
±35°k
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tion is the bias, or identifiable measurement error as­
sociated with the evaluation methods. The bias com­
ponent is significant in this context for two reasons. First,
statistical sampling implicitly relies on unbiased meas­
urement to produce unbiased inferences about the popula­
tionunder study. Second, many evaluation methods' im­
pact estimates have been shown to exhibit "sys~matic
biases, typically corresponding to discrepancies in re­
ported/actual operational or behavioral characteristics
of facilities being modeled. The biases cannot be con­
trolled for with increased sample sizes, and represent
a substantial potential risk associated with some meas­
urement methods.

The methodology employed in the scoping study
quantified this aspect ofevaluation planning by examin­
ing empirical evidence on the magnitude of these biases.
This examination requires an analytic framework that
allows for estimation of systematic biases of evaluation
methods' hourly load estimates by end use. Specifically,
some estimate of the ~ias needs to be developed for each
impact estimation method, such as:

E [11- t a~tualijt I]
t esttmatedijt

where:

i = index ofcustomers
j =index ofend uses
t =index ofhours
E =.the expectation operator
t = impact level

The methodology used in this study relies on as­
sumptions of an SAE application (see Ref. 2), but ex­
pands on this framework to derive estimates of relative
costs and risk of the methods. Table 2 summarizes the
input requirements and presents hypothetical scenarios
ofcostandrisk parameters. Abriefdescription ofthe data
and SAE methodology, along with application to sample
sizes and risk parameters follows.

Assessing Individual Methods

The preceding discussion imposes several data devel­
opment tasks to estimate sampling requirements, resul­
tant sampling costs, and bias levels accurately. The New
England Electric System has generously permitted
XENERGY use of a set of data collected for a stratified
sample of its commercial customers spanning seven build­
ing types, or sectors.

Engineering estimates of end-use loads have been
developed for each of the buildings under study using
XENERGY's LOAD PLANNER load shape modeling
software. Further, theengineering"simulation" estimates
are improved upon using statistical inferences about the
biases of the engingeering models by end use and hour.
These inferences are drawn from an accepted technique
whereby hourly engineering estimates for all end uses are
regressed upon known hourly whole-building load data.
The process that generats the HSEM estimates is shown
in Figure 1.

Examining the pjt, from the primary, unadjusted
sector level regressions, one can discern which loads are

Table 2. Calculating Risk and Cost

Risk =(Bias +Precision) Estimated Savings

Estimated Savings
Method Bias Precision (GWh) Risk

A 0% ±10% ±20 ±2
8 16°k ±10% ±20 ±5
C 35% ±10% ±20 ±9

Cost =Unit Cost of Method x Sample Size

Method

A
8
C

Unit Cost per
observation

$54,000
$2,400

$20

Sample Sizea

35
37
46

Total Cost
$1,890,000

$88,800
$920
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Building End-use
Load Estimates

t =index ofhours
E = the engineering estimate
pjt = the regression coefficient.

Understanding of these biases is incorporated into
the engineering models, resulting in an adjusted or hybrid
statistical/engineering model (HSEM). It is important to
note that the adjustment process is iterative and per­
fonned by building type, resulting in the set of adjust­
ments to the engineering models that best accounts for
the hourly difference between estimated and actual load
for all buildings in the sector. Thus the process does not
completely eliminate the bias found among end uses. In
fact, a repetition of the regression phase of analysis
identifies any remaining bias after the adjustments are
made.

Adjusted (HSEM)
Model

Repeat
Sector-level
Regression

Figure 1. The HSEM Methodology

systematically over-estimated or under-estimated by build­
ing type and hour, as these coefficients represent es­
timates of the ratio or actual to estimated load. Examples
of documented bias phenomena of engineering models
includeover-estimation ofmiscellaneous loads due to the
use of nameplate ratings, and lighting estimate biases
related to under-estimation of load factors and operating
hours.

The ~ at the frrst stage are estimates from the equa­
tion:

Lit = L ~jt Eijt errit

where, for end use j and hour t:

i =index ofcustomers
j =index ofend uses
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As mentioned previously, translating the estimates
into sample sizes required by each method for some
desired level of accuracy depends on assumptions about
the relationship between load and savings impacts. Al­
though the engineering load shape model employed for
this study predicted end use loads, and not before/after
impacts, these models are useful proxies for an algo­
rithmic engineering loadshape impact model.

Quantifying Cost-The Measurement Varlan,ce

For the HSEM and engineering simulation methods,
the variance of the Pjt were assumed to represent the
variance of the measurement error associated with these
methods. Consider that engineering or HSEM estimates
could be compared directly to end-use metered data for
the entire population. Then

E [ 11 _ 'Cl1U?teredijt I]
'Cestimatedijt

where:

i = index ofcustomers
j =index ofend uses
t = index ofhours .
E =the expectation operator
'C = impact level

represents the mean relative error in the estimates. For
this study, we assume that this quantity is equal
toll - ~jt I(i.e., 'C~tered /'Cestimaled = PFrom this assump­
tion, it follows that the variance of the regression coeffi­
cients provides a reasonable estimate of the variance of
the ratio ofactual to estimated impact, or the variance of
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the measurement error. To summarize, the regression
coefficients are estimates of the ratio of actual to es­
timated usage. Their variance is taken as the variance in
measurement error, while the absolute difference of the
coefficients from unity represents the bias ofthe method.

Lacking end-use metered data to compare with the
engineering or hybrid estimates, we feel that this is the
most precise measure available. In essence, our reliance
on the regression coefficients drives the quantification
process. In our judgment, this provides a more sound
basis for specifying sample sizes and bias estimates than
methods that rely entirely on assumptions about these
parameters or models.

Quantifying Cost-The Population Variance

When sampling for impacts with individual estimates,
the measurement variance referred to above is only one
component of the variance necessary to specify sample
sizes completely. The other variancecomponent, ofequal
magnitude across all methods, is the underlying popula­
tion variance of the parameter of interest. This is the
variance estimate familiar in traditional sampling studies
where accurate measurement is presumed. To illustrate,
for end-use metering, where no measurement variance is
evident in the impact estimate produced (another as­
sumption), a sample designed to estimate total program
impacts requires an estimate of the variance of the true
program impacts among the population of participants.

Estimates of this variation were arrived at separately
by two methods. The first involved identifying the coef­
ficients of variation (CVs) of an engineering parameter
thought to significantly affect impacts, namely operating
hours. These CVs were obtained by utility service ter­
ritory and building sector from a merged New York
Power Pool audit database. Another measure of underly­
ing impact variance was taken from the NEES dataset
used to estimate end use hourly loads. The variance of
unitized hourly end-use loads (kWh per square foot) was
examined as a proxy for DSM impacts. In most cases, the
results were consistent. Results from the NEES dataset
were used for population CVs to provideaconsistentdata
source for all parameters. For each measurementmethod,
the measurementand population varianceare used together
through calculated CVs to derive sample sizes.

Quantifying Risk

An implication of our assumptions regarding the
regression coefficients as estimators of the ratio ofactual
to estimated usage relates to the bias, as noted previously.
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Specifically, a direct result of this assumption is the
availability of 11 - Pit I as an estimate of the method's
estimated biases. The magnitude of this quantity is taken
as a. measure of the method's expected relative error.
When multipled by the total estimatedpopulation impact,
we have a measure ofthe identifiable risk associated with
the methodfor the given population. Recall thatprecision
requirements were constraints for assessing costs. The
relative precision presents another element ofrisk insofar
as it bounds the expected sampling error for a given
confidence level.

Lacking regression coefficients for engineering track­
ing estimates for the NEES sample data,· some assump­
tions were applied. First, for tracking estimates, the bias
was taken tobe equal to thatoftheengineering simulation
models. Second, the measurement variance was taken to
be twice that of the engineering simulation models. We
fell these are appropriate assumptions relative to other
methods. In addition, end-use metering is assumed to
arrive at the true impact, so that the measurement variance
is zero.

Results-Individual Methods

Table 3 presents results of the analysis performed for
the office sector over the peak hour of average summer
days. The peak hour of summer average day types was
selected as an indicator of the relative variance and bias
for the alternative methods. Othergroupings ofhours (all
peak hours, all off-peak hours, all shoulder hours) and
sectors were analyzed with results that are generalizable
from those presented. Summer was selected for demonstra­
tion because the heating parameters in the winter days
were not significantprobably because oflow electric heat
saturation. The peak hour was selected because the HSEM
adjustmentprocess focused on calibrating the loads specifi­
cally for this hour. Results for each sector were similar
and the office sector was selected for illustration because
of its size.

Table 3 shows that the individual methods cover a
spectrum of cost and risk. Using the lighting end-use as
an example, on one extreme with regard to cost is end-use
metering, with an estimated $1.8M required to cover a
sample size of 35. In contrast, an engineering tracking
model covers the required sample sizes with costs orders
of magnitude lower. The tradeoff, of course, is the risk
element. The susceptible risk evident with the tracking
model is over four times that seen with end-use metering.
Lying between these extremes on both scales is the HSEM
method.
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Table 3. Sampling for 'DSM Impacts
Individual Methods

improved in a cost-effective manner to desirable precision/
confidence levels?

Individual
Methods

Sample
SizeR Cosf Risk (MWh)

Ratio Estimation Applied for Impact
Measurement Validation

The ratio estimation concept applies because we are
fundamentally interested in the ratio, on average, be­
tween the tracking estimate and the true i~pact level. If
one were to sample all participants and measure DSM
impacts via end-use metering, a ratio could be developed
for each participant (actual impact/estimated impact) by
which the tracking estimates can be adjusted. This presents
an extreme case of overkill, as we would no longer need
the tracking model, and the detrimental cost implications
are obvious. Theoretically, some sampling ofparticipants
with end-use metering could provide a mean ratio by
which to adjust tracking model estimates, the underlying
assumption being that there is some aScertainable relation­
ship between the estimates and the true impact. Devia­
tions of this (mean) ratio from unity indicate the extent
of the. bias of the estimates, while the dispersion or
variation of the ratio indicates the extent to which valida­
tion sampling efficiencies exist. The concept of validat­
ing estimates in this manner is shown in Figure 2 with
hypothetical data for the purpose of demonstration.

4,040
88

122

18,253
311
575

920
3,580
3,620

$1,890,000
6,534,000
8,694,000

35
121
161

46
179
181

End Use Metering
Lighting
Cooling
Miscellaneous

Engineering Tracking
Lighting
Cooling
Miscellaneous

HSEM
Lighting 37 88,800 10,427
Cooling 163 391,200 88
Miscellaneous 166 398,400 456

aSample sizes required for ±1OOk precision, 90% confidence.
Engineering tracking standard error is assumed 50%
greater than HSEM. Hybrid/engineering tracking stand­
ard error is assumed 30% greater than HSEM. Risk uses
predefined target levels, assuming 200k of impacts are
among offices.

bCosts are Marginal Unit cost based: Tracking, $20; HSEM,
$2,400; End-use metered, $54,000.

Estimating Sample Sizes for Validation

Combinations of Methods for
Estimating DSM Technology

Impacts

Acommon tactic used in sampling applications is to
leverage some knowledge about a given parameter's
relationship with anotherparameteraboutwhich accurate
information is available for the population. For example,
in sampling for load research we often make use of the
relationship between billing kWh and kW demand, per­
haps within a stratified design, to lower sampling costs.
The sampling (i.e., cost) efficiency results from knowing
more about the relationship, or ratio of the two parameters,
than we know about, say, kW demand, on its own.

Sampling to validate some impact measurement af­
fords the same efficiencies by virtue of this concept. The
estimates produced by some model other than end-use
metering have been shown to exhibit some measurement
error and bias relative to the true impacts. We can think
of these as good guesses of the true impacts. Taking for
granted that an engineering tracking model will be used
to produce impact estimates for all participants, the issue
arises: how good are the estimates, and how can they be

The preceding discussion assumes that some apriori
knowledge ofthe variance of the ratio is required in order
to develop sampling plans. Intuitively, the sample size
required is dependent on the strength of the relationship
between the actual and estimated impact. Some basis for
the magnitude of the ratios and their variances must then
be developed. Since we have already argued that the
regression coefficients from the NEES HSEM model
estimation process can be taken as estimates for
tmeteredltestimated these coefficients can lend some per­
spective on the magnitude of the ratios and their varian­
ces.

If we take the standard error of these parameters to
be a measure of the dispersion of the ratio we can use it
for purposes ofdetermining validation sample sizes. The
population variance is not required in estimating sample
sizes because there exists a tracking model estimate for
all participants. We can sample to identify the ratios of
these estimates to actual. In addition, the validation ap­
proach implicitlyderives unbiasedestimates,asany number
of end-use metered readings used in this framework will
eliminate the bias. This method for improving upon es­
timates with smaller validation samples is currently being
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Average Estimated Savings Ratios

Engineering End-use Hybrid Metered Metered
N Tracking Model HSEM Metering Tracking Hybrid Tracking

Tracking Model 1,000 150

HSEM Sample 13 140 125 .89

End-use Metered 2 130 120 76 .63 .58
Sample

Validated Estimate I (Two-tiered):
Ratio of MeteredlTracking =76/130 =0 .58
Improved Estimate =Tracking • 0 .58 =150 • 0.58 =87

Validated Estimate II (Three-tiered):
Ratio of HybridlTracking -125/140 =0 .89
Ratio of Metered/Hybrid =76/120 =0 .63
Improved Estimate =Tracking • 0 .89 • 0.63 =150· 0.89· 0.63 =84

Figure 2. Validating Engineering Tracking Model Estimates with End-use Metering,
and HSEM Estimates

employed as the basis for impact estimation at Northeast
Utilities. As with the analysis of independent methods,
we assume that end-use load estimates are appropriate
proxies for sample size requirements for DSM impacts.

Table 4 utilizes the results of the two-tier method
sample sizes with predefined impactestimates (statewide
program targets) to show that equal precision can be
achieved, for the same risk level, with fewer end use
meters thanif end-use metering is used alone. Table 3
shows that 35 end-use meters would be needed to achieve
±10% precision given the estimate of lighting population
ev. For the lighting end use, these results indicate that
with 11 end-use meters the engineering-tracking estimates
can be validated with ±10% precision. This result and the
result that would be obtained with 35 end-use meters
would both be within 10% of the true gross savings.
However, the validation framework implies dramatic
cost reductions.

Multi-tiered Methods

By extension, if we can realize cost savings in sam­
pling for validation of a tnlcking model with some end­
use metering, it may prove possible to layer more than
one validation stage for further cost savings. For ex­
ample, if we presume that the variance of the ratio of
successively more precise estimates was smaller than that
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assumed in a one-stage validation, this would entail even
fewer high cost end-use metering sample points at poten­
tially significant cost savings. The effect is demonstrated
in Figure 2. An additional estimate needs to be produced
here, specifically:

Hit =L"'jt Eijt + errit

where, for end use j and hour t:

i =index ofcustomers
j = index ofend uses
t =index ofhours
E = the engineering estimate
H =the HSEM estimate
"'jt =the regression coefficient

Here, the regression coefficients represent the ratio of a
hybrid estimate to an engineering tracking estimate, the
frrst tier of the validation adjustment. As illustrated in
Table 4, the estimate produced with 19 HSEM and 3
end-use meters when applied as ratios to the other tier's
estimates produces a population estimate with ±10%
precision. Again, theprecision ofthis estimate is the same
as would be obtained with 35 end-use meters alone (see
Table 3) or 11 end-use meters in a two-tier approach.
Figure 3 shows these results relative to independent
methods.
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Table 4. Sampling for DSM Impacts Combinations of Methods

Combination of Methods8 Risk (MWh)

Two-tiered

Metering/Eng tracking

Lighting
Cooling
Miscellaneous

Three-tiered

Metering/Hybrid/Eng Tracking

Tracking

All Participants

Tracking Hybrid

End-use meters

11
21
20

End-use meters

$614,000
1,154,000

$1,100,000

4,040
88
122

Lighting All Participants 19 3 $227,600 4~040

Cooling 36 . 3 $268,400 88
Miscellaneous 34 5 $371 ,600 122

aSample sizes required for ±1OOk precision, 900k confidence. Engineering tracking standard error is assumed 500k greater than
HSEM. Hybrid/engineering tracking standard error is assumed 300k greater than HSEM. Risk uses predefined target levels,
assuming 20% of impacts are among offices. Assumes 1000 program participants.

bCosts are Marginal Unit cost based: Tracking, $20; HSEM, $2,400; End-use metered, $54,000.

o 2 4 6 8 10 12 14 16 18 20

Risk (GWh)

Conclusions

Figure 3 illustrates the cost-risk tradeoffof the three
individual methods and the two combination methods for
lighting for the office sector. Risk and cost are increasing
on their respective axes. Therefore, the method with the
lowest risk and cost is the one closest to the origin.
Metering and the two combination methods have low risk
but significantly different costs. Engineering-tracking
has extremely low costs but extremely high risk and
HSEM has low costbutmedium risks. While XENERGY
recommends the lowest cost, lowest risk strategy this
information will allow others to perform their own cost­
risk tradeoffs.

2.0
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- '-

- • Three-tiered Engineering -
• HSEM Tracking

•

It is important to recognize that these results are
based solely on the analysis of one data set. Therefore,
we believe they should be used to consider selections of
methods but should not be extended to mean that these
sample sizes guarantee the target precision. Further in­
vestigation and quantification of these relationships is
currently being pursued by XENERGY with several utility
clients. These efforts are being designed to test the as­
sumptions presented here in order to verify the efficacy
of the approach and its value in evaluation research.
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Figure 3. The Cost/Risk Trade-off
Comparing Individual and Combined
Methods:Llghtlng Impact Evaluation,

Peak Hour/Summer Average Day
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