NÁVIGANT

Smart Meter-Enabled Demand Response: Impact, Process, and Technology Assessment

Stuart Schare IEPEC Rome, Italy June 2012

DISPUTES & INVESTIGATIONS • ECONOMICS • FINANCIAL ADVISORY • MANAGEMENT CONSULTING

Evaluation of "Un-smart" Residential Demand Response is Well-Established

- » Technology and communication is simple
- » Evaluation focuses on load reduction from DR events
 - > Sample of homes with data loggers to measure loads
 - > Regression analysis of event impacts

Smart Grid Adds Capability But Also Challenges for Evaluation

AMI/Broadband Combined with HAN (2-way)

- » Process Evaluation Issues
 - > Customer use of new information and capabilities
 - > Customer interaction with technology
- » New Technology Issues
 - > Accuracy and speed of customer information
 - > Reliability of communications

NSTAR'S Smart Grid Pilot: AMR-Based Dynamic Pricing

- » Functionality:
 - > AC load control
 - > Dynamic pricing
 - > Usage/cost information via internet and in-home display
- » Communications:
 - > Zigbee HAN between meter, thermostat, & in-home display
 - > Customers' broadband connections customer $\leftarrow \rightarrow$ utility
- » "Soft Launch" in August 2010 with 300 customers
- » Full enrollment of ~3,000 participants in 2012

U.S. DOE Smart Grid Demonstration Project – Goal:

Prove viability of using AMR, HAN, and broadband —instead of full AMI to enable dynamic pricing and other "smart" functionality

Provision of In-Home Technologies

Smart Grid Communications Architecture

Customer Access to Usage and Bill Information

Experimental Design

Group		Smart Thermostat / Direct Load Control	Central Air Conditioning	Group Size
1	TOU Rate plus Critical Peak		~50% with CAC	700
2	Pricing (CPP)	\checkmark		700
3	Critical Peak Rebate	\checkmark		700
4	Information-only		~50% with CAC	770
	Total			2,870

Designed to measure impact of:

Information Rates Thermostats AC ownership NAVIGANT

Impact Evaluation – Control Group is the Key

- » Use of **regression analysis** to estimate baseline usage
 - > Analysis compares measured load to the baseline
 - > Baseline estimate depends on what type of impact is being measured

Type of Impacts		Required Control Group
Annual, seasonal, and monthly impacts	→	Monthly bill customers
Peak load and time-of-day impacts	→	Existing interval-metered load research sample
Impacts of load control and CPP events	>	Participants' own interval data

Process Evaluation – Multiple Surveys Targets and Timing

- > Pre- and post-pilot
- > Why didn't customers want to participate? Or continue participating?
- > DR events get to the customer right away

Technology Assessment – Key Objectives

Objectives are to assess:

Functionality Reliability Customer Acceptance

» Assessment addresses

- > HAN message success and failure rates
- > End-to-end communications success
- Impact on signal success of building characteristics and equip. configurations
- > Need for HAN signal repeaters
- Issues with broadband configuration or reliability
- > Need for equipment replacement

» Onsite data collection

- > Home characteristics
- > Equipment locations
- > Broadband service provider
- > Air conditioner characteristics

Technology Assessment – Validation of Functionality

System Feature Comparison					
Description	AMI with HAN	Pilot Architecture with HAN			
Interval Data	$\overline{\mathbf{A}}$	N			
Customer Information	Ø	N			
Direct Load Control	N	N			
Temperature Setbacks	Ø	N			
Remote Upgrades	Ø	V			
Revenue Protection	Ø	?			
Net Metering	Ø	V			
Meter Diagnostics	Ø	N			
Remote Disconnect	Ø				
Automated Outage Reporting		?			

Sound Evaluation Approach Is Needed for Assessment of New "Smart" Technologies and Programs

Impacts - Adjust control group for the type of load impacts desired
Process - Multiple customer survey types and timing
Technology – Added dimension

If pilot architecture and program design prove effective...

»Better understanding of impacts from dynamic rates and information access for customers

»Proof-of-concept for leveraging existing AMR meters to provide much of the functionality of expensive AMI infrastructure

Stuart Schare Navigant Consulting

Boulder, Colorado, USA (303) 728-2504 stuart.schare@navigant.com

Questions?

Stuart Schare Navigant Consulting

(303) 728-2504 stuart.schare@navigantconsulting.com