

Effects of Feedback on Residential Electricity Demand: Results from a Field Trial in Austria

Joachim Schleich (Fraunhofer ISI, Karlsruhe / Grenoble Ecole de Management)

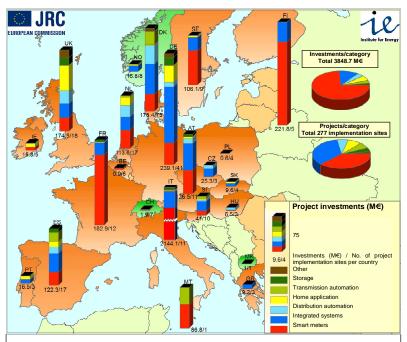
Marian Klobasa (Fraunhofer ISI, Karlsruhe)

Sebastian Gölz (Fraunhofer ISE, Freiburg)

IEPEC 2012, Rome

13 June 2012

Introduction: EU Regulation


- Energy Service Directive 2006/32/EC
 - Smart meters must be installed in new buildings or when existing buildings undergo major renovations – if technically feasible and economically reasonable
 - Final customers need to receive information on actual energy consumption and costs
- Electricity Directive 2009/72/EC
 - Roll out of smart meters to 80% of consumers in EU Member States by 2020 – MS decide on national strategy

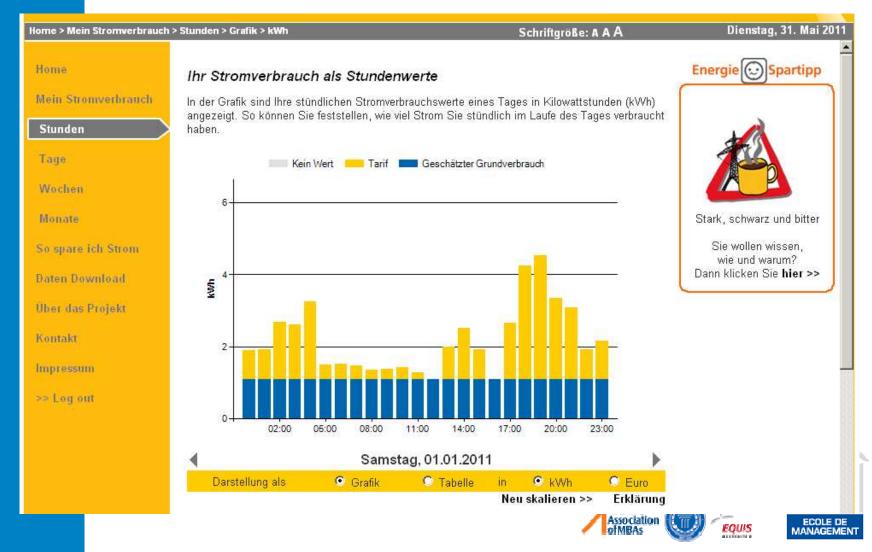
Introduction: Current situation in EU

- In Europe, over € 5.5 billion have been invested in about 300 Smart Grid projects during the last decade.
- Around 10 % of EU households have some sort of smart meter installed
- Countries differ

Picture 1: Overview of Smart Grid investment and implementation across the EU (source: JRC, IE). Projects represented can span over more than one country and can include more than one category. Three projects are not represented in this Picture: Kriegers Flak project, a Super Grid between Germany and Denmark, total investment of 507 M \in ; Smart Meter Roll-out and AMI in UK, estimated investment of 11897 M \in ; and Smart Meter Roll-out in Sweden, spanning in approx. 150 projects and amounting a total investment of approx.1500 M \in .

The field trial Intelliekon (for Linz, Austria)

- Sponsored by German Federal Ministry of Education (<u>www.intelliekon.de</u>)
- Carried out by Fraunhofer ISE (lead), Fraunhofer ISI, ISOE
- Involved two types of feedback: web portal, postal mail


Methodology: Field trial, econometric models

Field Trial

- Participating households were assigned randomly into two groups
 - Pilot group
 - Control group
- Pilot group households could chose between two types of feedback
 - Web portal
 - Postal mail

Feedback instrument : WEB Portal

Feedback instrument : Mail - info

• Monthly

- Two pages
- Information includes
 - Daily consumption
 - Weekly consumption
 - Monthly consumption
 - Energy saving tips

Data

- Hourly data for household electricity consumption
- December 2009 to November 2010
- Survey on socio-economic and technological characteristics
- 1525 observations
- 775 in pilot group
- Cross section data available only

Econometric models

- Feedback model (pilot and control group)
 - Estimates effects of providing feedback

$$Y = X\beta + I_p\delta + \varepsilon \qquad (1)$$

- Y: annual electricity demand
- X: Vector of household and technology characteristics
- I_p: Dummy = 1 if household belongs to pilot group
- OLS to get average effects (δ)
- Quantile regression to allow differences by electricity consumption levels (δ and β may vary)

Econometric models

- Feedback types model (only pilot group)
 - Allows for differences in effectiveness of feedback types
 - Allows for treatment bias
 - Estimate Heckman-type two stage model
 - Stage 1: Probit Model to estimate choice of feedback type
 - Stage 2: Estimate electricity consumption equation with feedback choice directly included
 - Endogeneity test involves testing significance of covariance

Results: Feedback Model OLS

Smart	-154.47	**
	(69.90)	
Age6	118.05	
	(77.99)	
Age17	276.95	***
	(63.08)	
Age30	356.76	***
	(71.59)	
Age45	531.02	***
	(82.75)	
Age60	506.49	***
	(79.82)	
Age60plus	557.04	***
	(74.27)	
Floorsize	5.81	***
	(1.04)	
Income	103.19	**
	(52.11)	
Education	-89.11	
	(72.22)	

Fridge	328.14	***
	(101.90)	
Dryer	434.89	***
	(75.56)	
Freezer	217.57	***
	(68.42)	
Dishwash	44.74	
	(105.29)	
Boiler	304.14	***
	(61.79)	
TV	159.20	***
	(49.06)	
Computertime	39.00	***
	(11.40)	
Appliances	65.29	***
	(19.35)	
Constant	-53.17	
	(164.55)	
R ² (adjusted)	0.4330	
Sample size	1070	
Smart in % of	4.51%	
consumption	4.51%	

Results: Quantile Regression

	q5	q10	q20	q30	q40	q50	
Smart	-60.74	-15.19	-24.97	-149.43	*** -174.27	** -125.38	**
	(84.27)	(72.89)	(54.44)	(56.28)	(68.98)	(62.29)	
Smart in % of percentile consumption	-4.85%	-0.90%	-1.18%	-5.75%	*** -5.97%	** -3.86%	**

	q60	q70	q80	q90	q95
Smart	-107.37	* -134.01	* -69.73	-123.05	-230.17
	(59.22)	(71.07)	(75.09)	(176.33)	(235.23)
Smart in % of percentile consumption	-3.03%	* -3.37%	* -1.59%	-2.36%	-3.67%

Results: Feedback type model

- No empirical support for endogeneity hypothesis
 - May treat feedback choice as random conditional on observed characteristics
- Estimate as weighted OLS (using P-Scores from Probit model as weights)
 - No empirical support for differences in effects of web versus mail-based feedback on electricity use

Conclusions

Effects of feedback on electricity consumption

- Estimated average savings per household correspond to 4.5%
 - Literature usually gives higher figures (Darby 2006, Ehrhardt et al. 2010)
 - 4.5% are not peanuts
- Households with very low and very high consumption do not respond to feedback
 - Limiting smart metering deployment to high electricity users may be ineffective
 - Need more research to corroborate this finding and explore underlying reasons

Contact

Joachim Schleich

Fraunhofer-Institute Systems- & Innovation Research Breslauer Straße 48 76139 Karlsruhe Germany joachim.schleich@isi.fraunhofer.de Grenoble Ecole de Management 12 Pierre Sémard

38000 Grenoble France joachim.schleich@grenoble-em.com

