
An energy efficiency program analysis to understand the gaps between *ex-ante* and *ex-post* evaluations

M.Raynaud, EDF-R&D and CEP – MINES ParisTech, Moret-sur-Loing, France D.Osso, EDF-R&D, Moret-sur-Loing, France J.Adnot, CEP – MINES ParisTech, Paris, France B.Bourges, GEPEA – Ecole des Mines de Nantes, Nantes, France B.Duplessis, CEP – MINES ParisTech, Paris, France

Context

● In housing sector:

- At EU level, mainly *ex-ante evaluations* of energy savings and few *ex-post* evaluations
- **Overestimation** of energy consumptions and energy savings calculated by engineering models (Branco et al. 2004, Hens 2010, Hong et al. 2006)
- Sources of errors: simplifying assumptions about **behaviour** (Cayre et al. 2011) or **inaccurate data** (Lutzenhiser et al. 2010)

• Our approach:

 Statistical modeling of deviations between calculated and observed consumptions before and after refurbishment on a panel of retrofitted dwellings in France

Aims of the study

• To give answers to the following questions:

- What are sources of errors between calculated and observed consumptions? Where do they come from? What are their effects?
- Can we explain part of after retrofitting error with variables linked to refurbishment (*i.e.* type of measure implemented...)?
- Are errors different after retrofitting from "before" ?

Presentation

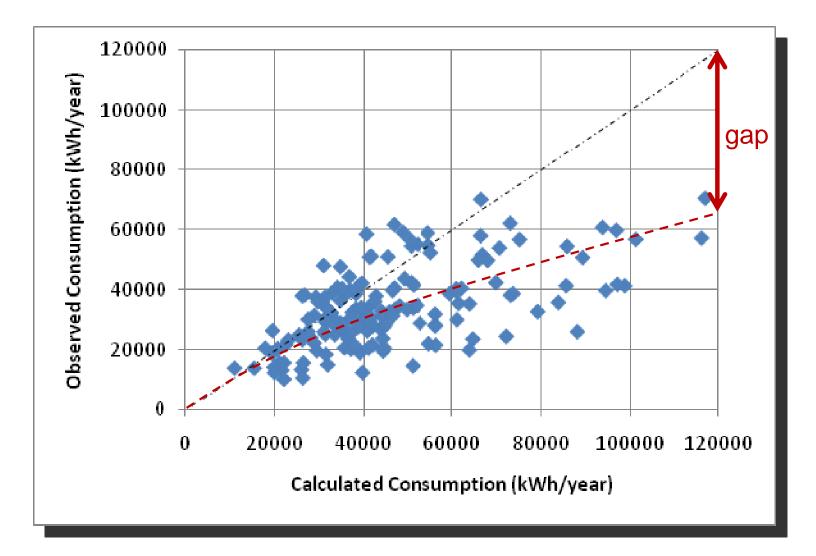
The data employed The methods used The results obtained The conclusions drawed

The program studied... and the dedicated inqu

- The EE program (Suerkemper et al. 2012):
- A regional energy efficiency program in France
- Conducted by EDF from 2006
- Covering electricity and fuel end-uses in the residential sector
- At the end of 2011, more than 10000 retrofitting measures implemented
- The inquiry:
- Two telephone surveys during 2009 and 2010
- Informations required: building typology, energy systems, behaviour, retrofitting action(s) (with and outside the program), total energy bills (on the last three years)
- 386 filled questionnaires

The samples

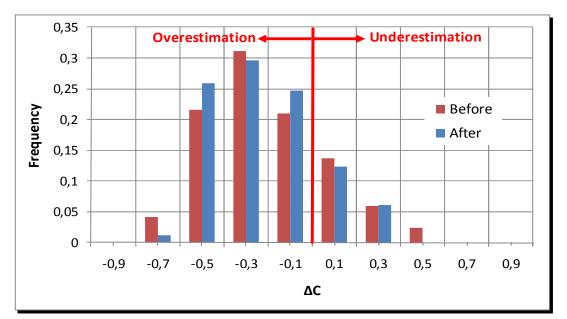
- Type of dwellings: **old** (<1974) **single family housing** mainly initially equipped with **oil or wood boilers**
- Type of refurbishment: insulation, double glazing windows, solar hot water heating, wood stoves or boilers, condensing boilers, heat pumps and multiple actions
- 167 questionnaires for the "before" situation (pre-retrofit)
- 81 questionnaires for the "after" situation (post-retrofit)
- 50 questionnaires presenting both situations ("before" and "after ")


Ex-ante and ex-post evaluations

- *Ex-ante* (Engineering model) (Déqué, Ollivier & Poblador 2000):
- A dynamic thermal model (monozone) developed by EDF-R&D
- Simulation of energy consumption for all end-uses
- Input data to the engineering model:
- From the inquiry or default values (e.g. the hours of wake-up)
- Modeling of the "after" situation <u>without</u> the direct rebound effect (no temperature change)
- *Ex-post* evaluation:
- Billing analysis (electricity, wood, gas, LPG and fuel oil)

Descriptive analysis

• Before refurbishment situation:


Descriptive analysis

• The error ratio: $\Delta C_{i} = \frac{\left(C_{obs.}^{i} - C_{calc.}^{i}\right)}{C_{calc.}^{i}}$

with i = before (b) or after (a) retrofit

• Comparison between after retrofitting and before retrofitting errors:

Situation	Before ∆C _b	After ΔC _a
1st quartile	-0.41	-0.41
Median	-0.25	-0.24
3rd quartile	-0.03	-0.06
Mean	-0.21	-0.21

Same order of magnitude for errors: (21%)

Analysing the gap with a statistical model

• The **response** variable:

$$\ln\left(\frac{C_{obs.}^{i}}{C_{calc.}^{i}}\right) = \ln(C_{obs.}^{i}) - \ln(C_{calc.}^{i})$$

With C_{obs.}= observed total consumption (in kWh/year), C_{calc.}= calculated total consumption (in kWh/year) and i = before (b) or after (a) retrofit

• The **explanatory** variables:

- Variables about: building, systems, climate, socioeconomic, behaviour and retrofit
- For the "before" situation, 28 variables
- For the "after" situation, 23 variables

Statistical method used

- Quantitative and qualitative variables -> covariance analysis (ANCOVA, general linear statistical modeling)
- Backward selection to retain only the significant variables with at least a significance level of 0.1 on Student's test
- Reference of the quantitative variables with the constraint «sum of coefficients = 0»
- 2 statistical models:
- Model of In(ratio **before retrofitting**) with a sample of 167 cases
- Model of In(ratio <u>after retrofitting</u>) with a sample of 81 cases

Model of In(ratio <u>before</u> retrofitting)

$$\ln\left(\frac{C_{obs.}^{b}}{C_{calc.}^{b}}\right) = \ln(C_{obs.}^{b}) - \ln(C_{calc.}^{b})$$

- Quality of model:
- Model highly significant (Pr to Fisher's test <0.0001)
 - Explanation and prediction capacities limited (adj. $R^2 = 0.482$; RMSE^{*} = 0.256)
- Negative intercept (-0.364) -> On average, the calculated consumption is higher than the observed consumption
- Classification of variables in three sources of errors:
- coming from modeling
- coming from inquiry
- coming from interaction between modeling and inquiry

Model of In(ratio <u>before</u> retrofitting)

With

After

1981

$$\ln\left(\frac{C_{obs.}^{b}}{C_{calc.}^{b}}\right) = \ln(C_{obs.}^{b}) - \ln(C_{calc.}^{b})$$

Before \rightarrow Gap

- Errors coming from modeling flaw:
- Building vintage (high significance):
- Garage (high significance): ${}^{\bullet}$

- Errors coming from inquiry:
- Loft type (high significance):

1974

Without 🔶 Gap 🥢

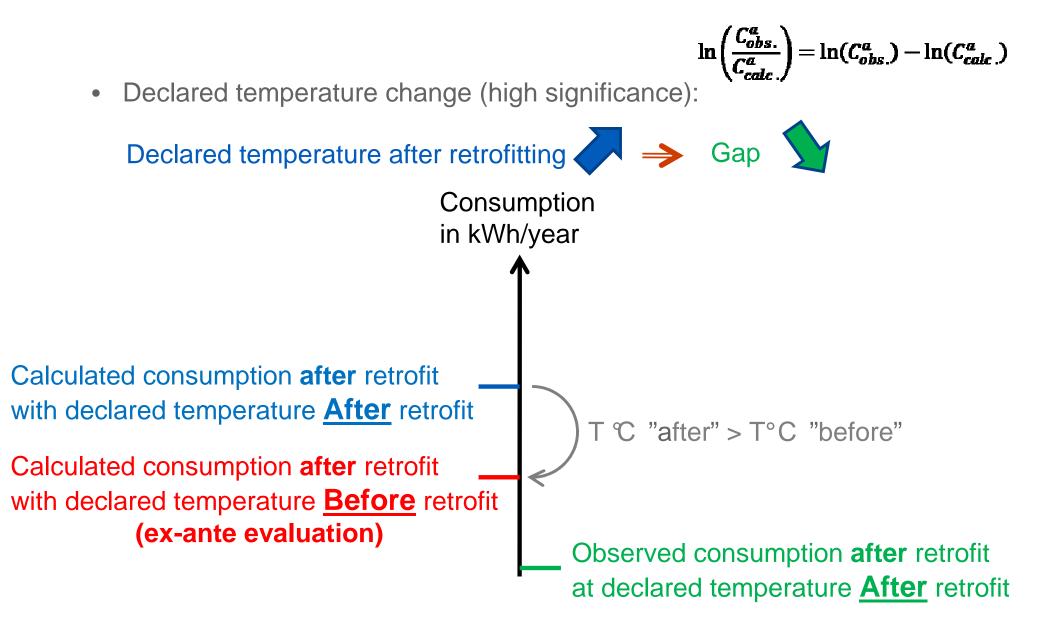
Model of In(ratio <u>before</u> retrofitting)

$$\ln\left(\frac{C_{obs.}^{b}}{C_{calc.}^{b}}\right) = \ln(C_{obs.}^{b}) - \ln(C_{calc.}^{b})$$

- Errors coming from interaction between modeling and inquiry:
- Floor area (high significance): $m^2 \longrightarrow Gap \bigvee$
- Wall insulation (high significance):
- + insulation default values link to building vintage lead to an overestimation

Model of In(ratio after retrofitting)

$$\ln\left(\frac{C_{obs.}^{a}}{C_{calc.}^{a}}\right) = \ln(C_{obs.}^{a}) - \ln(C_{calc.}^{a})$$


• Quality of model:

Explanation and prediction capacities limited (adj. $R^2 = 0.370$; RMSE = 0.237)

- Negative intercept (-0.348)
- overestimation of calculated consumption
- Three variables directly linked with the refurbishment:
- Type of energy efficiency action: not significant
- Unskilled workforce: not significant
- Declared temperature change: high significance
- Remaining variables don't provide more information than the "before" model

Model of In(ratio after retrofitting)

Conclusions drawn

- Engineering model overestimates consumptions with the same order of magnitude before and after retrofitting
- The main sources of errors between ex-post and ex-ante evaluations depend on:
- Modeling flaw: recurrent difficulty to take into account the oldest houses
- Interaction between modeling and inquiry: limits of simple modeling (monozone simulation) and uncertainty about declared informations
- The errors between *ex-post* and *ex-ante* evaluations in the after retrofitting :
- Not found a link with type of energy efficiency action
- A link with temperature change (proxy of direct rebound effect):

Conclusions drawn (continuation)

- Future works:
- To enhance the validity of those results from new surveys dedicated to insulation measures and air/air heat pump implementation
- Statistical modeling of direct rebound effect

Many thanks for your attention !

Your comments and suggestions are welcome at: maxime.raynaud@edf.fr

References

Branco G., Lachal B., Gallinelli P., Weber W. 2004. "Predicted versus observed heat consumption of a low energy multifamily complex in Switzerland based on long-term experimental data." *Energy and Buildings* 36: 543–555.

Cayre E., Allibe B., Laurent M-H., Osso D. 2011. "There are people in the house!: How the results of purely technical analysis of residential energy consumption are misleading for energy policies." *European Council for an Energy Efficiency Economy – ECEEE'11 summer study – Energy efficiency first: The foundation of a low-carbon society*, 6-11 juin 2011, Toulon/Hyères, France, 1675-1683

Déqué F., Ollivier F., Poblador A. 2000. "Grey boxes used to represent buildings with a minimum number of geometric and thermal parameters." *Energy and Buildings* 31: 29–35.

Hens H. 2010. "Energy efficient retrofit of an end of the row house: Confronting predictions with long-term measurements." *Energy and Buildings* 42: 1939–1947.

Hong S. H., Oreszczyn T., Ridley I., Warm Front Study Group. 2006. "The impact of energy efficient refurbishment on the space heating fuel consumption in English dwellings." *Energy and Buildings* 38: 1171–1181.

References

Lutzenhiser L., Moezzi M., Hungerford D., Friedmann R. 2010. "Sticky Points in Modeling Household Energy Consumption." *2010 ACEEE Summer Study on Energy Efficiency in Buildings*, 7: 167-182.

Suerkemper F. Thomas S., Osso D., Baudry P. 2012. "Cost-effectiveness of energy efficiency programmes—evaluating the impacts of a regional programme in France." *Energy Efficiency* 5: 121–135.

- \odot Explanatory variables used for the statistical model of $\ln(\text{LR}_{\rm b})$:
- 15 variables about building

Variable	Definition
ΔFloor area	Difference between the floor area and 140 m ² (mean of the sample); reference unit: 10 m ² ; [-8.2; 20.8]
ΔHeight	Difference between the ceiling height and 2.5 m (mean of the sample); reference unit: 1 m; [-0.5; 2.2]
Building vintage	0- before 1974 (67.7% of the sample); 1- between 1974 and 1976 (10.2%); 2- between 1977 and 1981 (6.6%); 3- after 1981 (15.5%)
Windows	0- no prior retrofitting declared (55.1% of the sample); 1- prior retrofitting declared (44.9%)
Insulation walls	0- no prior retrofitting declared and a insulation level declared lower than the insulation level of the building vintage (4.8% of the sample); 1- no prior retrofitting declared and a insulation level declared equals to the insulation level of the building vintage (34.1%); 2- no prior retrofitting declared and a insulation level a insulation level declared higher than the insulation level of the building vintage (28.1%); 3- prior retrofitting declared (33.0%)

- \odot Explanatory variables used for the statistical model of $\ln(\text{LR}_{\rm b})$:
- 15 variables about building (continuation)

Variable	Definition
Insulation floor	0- no prior retrofitting declared and a insulation level declared lower than the insulation level of the building vintage (22.1 % of the sample); 1- no prior retrofitting declared and a insulation level declared equals to the insulation level of the building vintage (58.7%); 2- no prior retrofitting declared and a insulation level a insulation level declared higher than the insulation level of the building vintage (9.0%); 3- prior retrofitting declared (10.2%)
Insulation loft	0- no prior retrofitting declared and a insulation level declared lower than the insulation level of the building vintage (22.1 % of the sample); 1- no prior retrofitting declared and a insulation level declared equals to the insulation level of the building vintage (10.2%); 2- no prior retrofitting declared and a insulation level a insulation level declared higher than the insulation level of the building vintage (30.0%); 3- prior retrofitting declared (37.7%)
Ventilation	0- no prior retrofitting declared (86.8% of the sample); 1- prior retrofitting declared (13.2%)

- \odot Explanatory variables used for the statistical model of $\ln(\text{LR}_{\rm b})$:
- 15 variables about building (continuation)

Variable	Definition
Type of floor	0- partial floor above basement (18.0% of the sample); 1- total floor above basement (53.9%); 2- floor above ground (21.5%); 3- floor above crawlspace (6.6%)
Type of loft	0- loft converted (22.1% of the sample); 1-virgin loft (70.7%); 2- without virgin loft (7.2%)
Common ownership	0- house separate (67.6% of the sample); 1- existence of one party wall (17.4%); 2- existence of least two party walls (15%)
Garage	0- no garage (79% of the sample); 1- existence of a garage (21%)
Form	0- house with a compact form (73.6% of the sample); 1- complex form (26.4% of the sample)
Orientation windows	0- majority to the south (58.7% of the sample); 1 - majority to the north (17.4%); 2 - as much to the south as to the north (23.9%)
Storey	0- no storey (31.7% of the sample); 1- existence of least one storey (68.3%)

- \odot Explanatory variables used for the statistical model of $\ln(\text{LR}_{\rm b})$:
- 7 variables about systems

Variable	Definition
ΔElectrical appliances	Difference between the number of electrical appliances declared and 14 (mean of the sample); reference unit: 1 electrical appliance; [-6.0; 8.0]
Wood extra heater consumption	Yearly wood extra heater consumption; reference unit : 1 stere; [0.0; 30.0]
Heating system	0- direct electric heating (22.7% of the sample); 1- boiler (all energies except wood) installs before 2002 (62.9%); 2- boiler (all energies except wood) installs after 2001 (7.8 %); 3- old wood boiler (6.6%)
Type of sanitary domestic hot water	0- electric water heater (49.1% of the sample); 1- via boiler with tank (39.5%); 2- via boiler without tank (11.4%)
Lighting	0- majority of classic bulbs (31.1% of the sample); 1- majority of fluorescent bulbs (39.5%); as many classic bulbs as fluorescent bulbs (29.3%)
Cooking energy	0- electricity as main energy (27.5% of the sample); 1- gas as main energy (12.6%); 2- LPG as main energy (59.9%)
Swimming pool	0- no swimming pool (95.2% of the sample); 1- existence of a swimming pool (4.8%)

- Explanatory variables used for the statistical model of $ln(LR_b)$:
- 1 variable about climat

Variable	Definition
ΔHDDs	Difference between the actual and the normative numbers of annual regional heating degree days; reference unit: 100 HDDs; [-5.47; -3.52]

• 1 variable socioeconomic

Variable	Definition
Number of occupants	0- nobody during days of week (31.1% of the sample); 1- one person
during day	(30%); 2- two persons (38.9%)

- \odot Explanatory variables used for the statistical model of $ln(LR_b)$:
- 4 variables about behaviour

27

26/06/2012

Variable	Definition
ΔSet point temperature	Difference between the set point temperature and 19 °C; reference unit : 1 °C; [-3.5; 6.0]
Management of set point	0- during week, never of reductions (32.3% of the sample); 1- reduction
temperature	during night or day (59.9%); 2- reduction during day and night (7.8%)
Management of sanitary	0- only showers (59.3% of the sample); 1- showers and some baths
domestic hot water	(40.7%)
	0- less than 10 minutes per day (48.5% of the sample); 1- between 10
Time of open windows	minutes and 30 minutes per day (29.9%); 2- between 30 minutes and 1
	hour per day (11.4%); 3- more than 1 hour per day (10.2%)

- Explanatory variables used for the statistical model of $ln(LR_a)$:
- 10 variables about building

Variable	Definition
ΔFloor area	Difference between the floor area and 140 m ² (mean of the sample); reference unit: 10 m ² ; [-6.2; 15.8]
ΔHeight	Difference between the ceiling height and 2.5 m (mean of the sample); reference unit: 1 m; [-0.5; 0.75]
Building vintage	0- before 1974 (74.1% of the sample); 1- between 1974 and 1976 (7.4%); 2- between 1977 and 1981 (7.4%); 3- after 1981 (11.1%)
Type of floor	0- partial floor above basement (17.3% of the sample); 1- total floor above basement (51.8%); 2- floor above ground (24.7%); 3- floor above crawlspace (11.1%)
Type of loft	0- loft converted (22.2% of the sample); 1-virgin loft (71.6%); 2- without virgin loft (6.2%)
Common ownership	0- house separate (64.2% of the sample); 1- existence of one party wall (21%); 2- existence of least two party walls (14.8%)
Garage	0- no garage (70.4% of the sample); 1- existence of a garage (29.6%)

- Explanatory variables used for the statistical model of $ln(LR_a)$:
- 10 variables about building (continuation)

Variable	Definition
Form	0- house with a compact form (71.6% of the sample); 1- complex form (28.4% of the sample)
Orientation windows	0- majority to the south (60.5% of the sample); 1 - majority to the north (8.6%); 2 - as much to the south as to the north (30.9%)
Storey	0- no storey (25.9% of the sample); 1- existence of least one storey (74.1%)

- Explanatory variables used for the statistical model of $ln(LR_a)$:
- 5 variables about systems

Variable	Definition
ΔElectrical appliances	Difference between the number of electrical appliances declared and 14 (mean of the sample); reference unit: 1 electrical appliance; [-5; 9]
Wood extra heater consumption	Yearly wood extra heater consumption; reference unit : 1 stere; [0; 27]
Lighting	0- majority of classic bulbs (23.5% of the sample); 1- majority of fluorescent bulbs (42.0%); as many classic bulbs as fluorescent bulbs (34.5%)
Cooking energy	0- electricity as main energy (25.9% of the sample); 1- gas as main energy (16.1%); 2- LPG as main energy (58%)
Swimming pool	0- no swimming pool (95.1% of the sample); 1- existence of a swimming pool (4.9%)

- Explanatory variables used for the statistical model of $ln(LR_a)$:
- 1 variable about climat

Variable	Definition
ΔHDDs	Difference between the actual and the normative numbers of annual regional heating degree days; reference unit: 100 HDDs; [-5.47;-2.17]

• 1 variable socioeconomic

31

26/06/2012

Variable	Definition
Number of occupants	0- nobody during days of week (27.2% of the sample); 1- one person
during day	(39.5%); 2- two persons (33.3%)

- Explanatory variables used for the statistical model of $ln(LR_a)$:
- 4 variables about behaviour

Variable	Definition
Set point temperature change	Change in set point temperature due to the retrofitting; reference unit: 1°C; [-5.00; 3.75]
Management of set point temperature	0- during week, never of reductions (30.9% of the sample); 1- reduction during night or day (61.7%); 2- reduction during day and night (7.4%)
Management of sanitary domestic hot water	0- only showers (45.7% of the sample); 1- showers and some baths (54.3%)
Time of open windows	0- less than 10 minutes per day (44.4% of the sample); 1- between 10 minutes and 30 minutes per day (27.2%); 2- between 30 minutes and 1 hour per day (18.5%); 3- more than 1 hour per day (9.9%)

- Explanatory variables used for the statistical model of $ln(LR_a)$:
- 2 variables about retrofit

Variable	Definition
Bad workmanship	0- no bad workmanship (90.1% of the sample); 1- bad workmanship (9.9%)
	0- action only on sanitary domestic hot water production (6.2% on the sample); 1- action only on insulation (8.6%); 2- action only on heating
Energy efficiency action	system (34.6%); 3-actions on several fields (50.6%)

