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ABSTRACT	

This	 paper	 presents	 a	 new	 energy	 savings	 estimation	 approach—referred	 to	 as	 the	 AMI	
Customer	 Segmentation	 (AMICS)	 model—that	 provides	 accurate	 impact	 estimates	 by	 taking	 full	
advantage	 of	 hourly	 AMI	 data.	 This	 approach	 differs	 from	 more	 traditional	 methods	 in	 that	 it	
automatically	 develops	 a	 large	 number	 of	 customer-specific	 regressions	 covering	 a	 wider	 range	 of	
customer	 types,	weather	conditions	and	 time	periods.	The	approach	uses	a	 type	of	hierarchical	 linear	
model—the	 random	 coefficients	model—that	 allows	 savings	 estimates	 to	 be	 tailored	more	 closely	 to	
individual	 customer	characteristics.	This	 is	accomplished	by	 first	grouping	customer	consumption	data	
into	 different	 categories	 based	 on	 energy	 use	 and	 weather	 conditions.	 Separate	 models	 are	 then	
estimated	for	each	usage/weather	category,	which	allows	for	separate	 load	shape	predictions	for	very	
specific	customer	types.	

The	 AMICS	 model	 specification	 was	 tested	 using	 data	 from	 both	 residential	 and	 commercial	
HVAC	efficiency	programs	 in	California.	Using	participant	and	AMI	data	 from	both	of	 these	programs,	
average	daily	load	shapes	were	calculated	for	specific	day	types	(weekday,	weekend,	seasonal)	and	used	
to	estimate	program	impacts.	When	estimated	load	shapes	were	compared	against	a	holdout	sample	of	
customers,	the	random	coefficients	model	performed	extremely	well;	load	shape	estimates	were	within	
1	percent	of	 the	holdout	sample.	Besides	producing	accurate	estimates	of	energy	use,	 the	automated	
categorization	 and	 modeling	 processes	 allow	 for	 separate	 savings	 estimates	 and	 load	 shapes	 to	 be	
developed	easily	for	a	variety	of	situations.	

Introduction	

As	electric	utilities	transition	to	advanced	metering	infrastructure	(AMI),	a	greater	amount	and	
richer	 source	of	consumption	data	are	becoming	available	 to	evaluators.	A	 single	customer’s	metered	
data	 at	 one-hour	 intervals	 translate	 to	 over	 700	data	 points	 per	month,	 providing	 an	 opportunity	 for	
evaluators	to	better	understand	the	impact	that	energy	efficiency	programs	(and	other	factors)	have	on	
energy	consumption	during	specific	hours	of	the	day,	rather	than	a	daily	average	derived	from	monthly	
data.	 A	 common	 concern	 among	 economists	 and	 other	 analysts	 working	 with	 monthly	 consumption	
data	is	that	the	aggregation	conceals	more	than	it	reveals.	The	availability	of	short-interval	meter	data	
allows	for	potentially	more	accurate	and	robust	models.	

One	 of	 the	 key	 areas	 where	 AMI	 data	 have	 the	 potential	 to	 improve	 accuracy	 is	 in	 billing	
regression	models	used	to	estimate	program	energy	impacts.	Most	of	the	literature	to	date	has	focused	
on	using	monthly	 consumption	data,	 as	 these	are	 typically	 all	 that	have	been	available	 for	estimating	
impacts	 at	 the	program	 level.	 See	 the	California	 Evaluation	 Framework	 (CPUC	2006)	 and	 the	Uniform	
Methods	 Project	 (Agnew	 and	 Goldberg	 2013)	 for	 a	 summary	 of	 the	 more	 traditional	 methods	 using	
monthly	data.	Other	studies	(particularly	those	in	demand	response	programs)	have	utilized	AMI	data	to	
estimate	load	shapes	and	demand	impacts	(Nexant	2014	for	example),	but	these	models	typically	have	
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been	 developed	 manually	 for	 each	 specific	 situation	 and	 therefore	 have	 not	 been	 practical	 for	
addressing	a	large	number	of	customer	types	and	time	periods.	Other	works	such	as	Hsiao	et	al.	(1989)	
provided	an	early	application	of	the	random	coefficients	model	to	energy	efficiency,	while	Granderson	
et	 al.	 (2015)	 have	 begun	 to	 look	 at	 developing	 AMI	 regression	models	 in	 a	more	 systematic	 fashion.	
None	 of	 these	 past	 studies,	 however,	 have	 presented	 a	 method	 for	 efficiently	 developing	 a	 large	
number	of	models	that	are	tailored	to	a	wide	range	of	customer	types	and	time	periods	that	take	full	
advantage	of	the	information	contained	in	the	AMI	data.		

To	 explore	 how	 AMI	 data	 could	 be	 used	 in	 billing	 regression	models,	 the	 California	 investor-
owned	 utilities1	 (IOUs)	 contracted	 with	 Evergreen	 Economics	 to	 conduct	 exploratory	 research,	 and	 a	
portion	of	these	research	results	is	presented	in	this	paper.	During	the	course	of	this	research,	it	became	
apparent	 that	 an	 innovative	 new	 analysis	 method—one	 that	 we	 refer	 to	 as	 the	 AMI	 Customer	
Segmentation	or	AMICS	model—has	the	potential	to	be	a	groundbreaking	impact	evaluation	approach	
that	fully	utilizes	the	benefits	of	AMI	data.	As	discussed	in	the	remainder	of	this	paper,	we	believe	that	
the	AMICS	model	represents	a	significant	 improvement	over	traditional	billing	regression	models,	as	 it	
provides	 an	 efficient	 method	 for	 tailoring	 impacts	 to	 specific	 customer	 conditions	 (e.g.,	 day	 types,	
seasons,	 customer	 types).	 The	 AMICS	model	 also	 proved	 to	 be	 very	 accurate	 when	 tested	 against	 a	
holdout	sample	of	customers.		

This	 current	 work	 focusing	 on	 commercial	 customers	 builds	 on	 an	 earlier	 application	 of	 the	
AMICS	 model	 to	 residential	 data,2	 and	 the	 results	 of	 the	 residential	 model	 are	 summarized	 here	 to	
provide	context	for	the	commercial	modeling.	

Analysis	Methods	

This	 paper	 presents	 the	 results	 of	 the	 AMICS	 modeling	 approach	 that	 utilizes	 data	 from	 the	
following	residential	and	commercial	HVAC	programs:		

	
• SCE	Residential	Quality	Installation	(QI)	Program	Participant	Data	–	a	dataset	containing	1-hour	

interval	 whole	 house	 metered	 consumption	 on	 2,039	 homes	 that	 participated	 in	 the	 SCE	 QI	
Program	 between	 January	 2012	 and	 December	 2014.	 The	 SCE	 QI	 Program	 is	 a	 California	
statewide	program	designed	to	achieve	energy	and	demand	savings	through	the	installation	of	
replacement	 split	 or	 packaged	HVAC	 systems	 in	 accordance	with	 industry	 standards.	 Program	
data	include	household	and	program	participation	information	including	the	home	climate	zone	
and	date	of	participation	in	the	program.		

• SCE	Commercial	Quality	 Installation	 (CQI)	 Program	Participant	Data	 –	 a	 dataset	 containing	 a	
mix	 of	 1-hour	 and	 15-minute	 interval	 whole	 building	 consumption	 data	 from	 1,958	 business	
customers	that	participated	in	the	SCE	CQI	program	from	January	2014	to	August	2016.	The	SCE	
CQI	 program	 is	 part	 of	 a	 California	 statewide	 program	 that	 targets	 HVAC	 installations	 in	 the	
commercial	sector.		

	
Each	 customer	dataset	was	 combined	with	weather	data	obtained	 from	 the	National	Oceanic	

and	 Atmospheric	 Administration	 (NOAA)	 to	 develop	 datasets	 with	 both	 energy	 consumption	 and	
weather	 data.	Weather	 station	 data	 were	 selected	 based	 on	 proximity	 to	 each	 customer’s	 zip	 code,	
matching	climate	zone,	and	availability	of	complete	hourly	data.	Additional	analysis	was	performed	to	

																																																													
1	The	California	investor-owned	utilities	include	Pacific	Gas	and	Electric	(PG&E),	Southern	California	Edison	(SCE),	
San	Diego	Gas	&	Electric	(SDG&E),	and	Southern	California	Gas	Company	(SoCalGas).		
2	See	http://www.calmac.org/publications/AMI_Report_Volume_1_FINAL.pdf	for	the	final	report	for	the	first	
residential	application	of	the	AMICS	model.		
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identify	 unreasonably	 high	 or	 low	 temperature	 readings,	 based	 on	 the	 record	 high	 and	 low	
temperatures	 in	each	climate	zone.	Missing	observations	and	temperatures	 identified	as	unreasonable	
were	imputed	using	the	next	closest	weather	station	if	available;	otherwise,	they	were	imputed	with	the	
average	of	the	preceding	and	following	temperature	reads.		

Modeling	Approach	

With	the	most	basic	billing	regression	specification,	the	model	uses	monthly	consumption	data	
and	produces	a	regression	 line	that	represents	the	average	energy	use	or	savings	across	all	customers	
included	in	the	sample,	with	the	average	often	calculated	at	a	monthly	or	annual	level.	Variations	on	the	
standard	linear	regression	such	as	the	fixed	effects	model	can	be	developed	to	produce	separate	savings	
estimates	for	sub-groups	of	customers.	With	the	availability	of	AMI	data,	however,	modeling	approaches	
need	 to	be	adapted	 to	account	 for	 the	additional	 information	as	well	as	 the	 sheer	volume	of	data.	 In	
theory,	the	traditional	billing	regression	methods	such	as	the	fixed	effects	model	can	be	adapted	for	use	
with	hourly	AMI	data.	However,	 the	number	of	different	coefficients	 (or	separate	models)	 required	to	
capture	 the	 variations	 in	 energy	 use	 across	 hours,	 days	 and	 seasons—in	 addition	 to	 accounting	 for	
variation	 across	 customers—requires	 significant	 amounts	 of	 computer	 processing	 time,	 along	 with	 a	
separate	process	for	efficiently	evaluating	the	performance	of	different	model	specifications.		

Rather	than	attempting	to	adapt	a	fixed	effects	model	for	use	with	a	high	volume	of	AMI	data,	
this	 paper	 explores	 a	 different	 hierarchical	 modeling	 approach	 that	 first	 categorizes	 the	 data	 into	
manageable	 sub-groups	 and	 then	 uses	 regression	 analysis	 to	 estimate	 energy	 use	within	 each	 group.	
The	 term	 “random	 coefficients	 model”	 refers	 to	 a	 type	 of	 linear	 hierarchical	 model	 that	 provides	 a	
distribution	 of	 model	 parameters	 across	 customer	 types	 and	 weather	 conditions.3	 The	 random	
coefficients	 model	 works	 by	 explicitly	 accounting	 for	 two	 separate	 sources	 of	 variability	 commonly	
found	in	interval	energy-use	data.	The	first,	within-subject	variability,	represents	the	variation	in	energy	
usage	throughout	the	day	by	an	individual	customer.	The	second,	among-subject	variability,	represents	
the	 variation	 in	 energy	 use	 across	 customers	 and	 varying	 weather	 conditions	 experienced	 by	 each	
customer.4	

To	 incorporate	 both	 types	 of	 variability	 and	 estimate	 customer	 load	 shapes,	 the	 random	
coefficients	model	utilizes	a	multi-stage	process	that	is	summarized	in	Figure	1.	

	

																																																													
3	See	Snijders	and	Bosker	(2012)	for	a	more	detailed	explanation	of	the	random	coefficients	model,	and	a	more	
general	discussion	of	the	different	types	of	hierarchical	linear	regression	models.		
4	See	Helvoigt	(2016)	for	a	more	detailed	discussion	of	how	these	types	of	variability	can	be	addressed	in	billing	
regression	models.		
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Figure	1.	Summary	of	AMICS	model	savings	estimation	approach	

First	 Stage	 –	 Binning	 Process.	 For	 the	 customers	 in	 the	 QI	 program,	 the	 first	 stage	 of	 the	
modeling	approach	uses	a	fixed	effects	regression	model	to	create	estimates	of	daily	baseload	electricity	
use	for	each	customer,	controlling	for	outside	air	temperature.	The	fixed	effects	model	specification	is	as	
follows:	

	 	

	
	
A	characteristic	of	 the	 fixed	effects	model	 is	 the	estimation	of	a	specific	constant	αi,	 for	every	

customer	site.	This	constant	varies	by	customer	site	and	accounts	for	time-invariant	effects	on	electricity	
consumption	over	 the	year.	 In	 the	model	specification	above,	 the	constant	can	be	 interpreted	as	site-
specific	baseload	consumption	after	controlling	for	variation	in	outside	air	temperature	(CDD	and	HDD,	
using	a	base	temperature	of	65	degrees	Fahrenheit).	Customers	are	then	ranked	in	ascending	order	of	
baseload	energy	use	and	assigned	to	one	of	20	“customer	groups”	based	on	each	customer’s	weather	
normalized	 energy	 usage,	 prior	 to	 program	 participation.	 In	 this	 way,	 customers	 with	 similar	 energy	
consumption	 are	 grouped	 together.	 Each	 group	 represents	 about	 5	 percent	 of	 total	 daily	 baseload	
electricity	usage	for	the	customers	in	our	sample.5	Because	of	this,	the	number	of	customers	in	each	bin	
varies,	but	the	amount	of	daily	kWh	each	bin	represents	is	approximately	the	same.	 	
																																																													
5	The	residential	model	uses	20	baseload	energy	usage	groups,	while	the	commercial	model	uses	only	5.	We	
selected	a	smaller	number	of	baseload	bins	for	commercial	because	these	customers	are	segmented	by	two	
additional	metrics.	By	the	end	of	the	binning	process,	we	will	have	20	residential	customer	groups	(the	20	baseload	

	

DailykWhi,t =αi +β1(CDDi,t )+β2 (HDDi,t )+εt

Where :
DailykWhi,t  = Daily kWh consumption for customer i on day t.

CDDi,t  = Cooling degree days (CDD) for customer i on day t.
HDDi,t  = Heating degree days (HDD) for customer i on day t.

αi = Customer specific constant (i.e., baseload weather normalized consumption)
β1,β2 = Coefficients estimated in the regression model
εi,t = Random error assumed normally distributed
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Two	 additional	 segmentation	 approaches	 are	 applied	 for	 the	 first	 stage	 binning	 of	 the	
commercial	 customers:	 total	 daily	 energy	 usage	 (including	 weather-dependent	 use)	 and	 load	 shape	
clustering.	We	 found	 that	 these	 additional	 groupings	 are	 necessary	 to	 reduce	 the	 variation	 in	 energy	
usage	among	customers	within	each	baseline	usage	group,	as	commercial	customers	are	far	more	varied	
than	 residential	 in	 terms	 of	 their	 building	 sizes	 and	 operations.	 Our	 analysis	 found	 that	 segmenting	
commercial	 customers	 by	 the	 combinations	 of	 these	 three	 different	metrics	 allows	 us	 to	 successfully	
identify	 separate	 categories	 of	 customers	 with	 similar	 energy	 usage	 patterns,	 without	 relying	 on	
additional	information	on	business	type	or	square	footage.	As	an	additional	step,	our	final	model	drops	
the	largest	commercial	customers	(those	with	greater	than	4,000	average	daily	kWh	consumption)	from	
the	model.	These	very	large	customers	have	too	much	variation	in	their	load	shapes,	and	their	inclusion	
in	the	model	leads	to	less	accurate	forecasts	for	the	remaining	commercial	customers.	This	final	screen	
results	in	31	of	the	largest	customers	being	dropped	from	the	analysis.	

To	create	groupings	on	total	daily	usage,	we	calculate	the	average	daily	kWh	consumption	over	
a	 single	pre-period	 year.	 Customers	 are	 then	 ranked	 in	 ascending	order	of	 total	 daily	 energy	use	 and	
assigned	to	one	of	12	total	usage	groups,	with	about	8	percent	of	customers	in	each	bin.		

With	the	CQI	group,	a	cluster	analysis	is	used	to	categorize	commercial	customers.6	The	cluster	
analysis	is	used	to	identify	commercial	customers	with	similar	energy	use	during	the	pre-period.	Cluster	
analysis	 is	an	unsupervised	machine-learning	algorithm	designed	to	detect	patterns	in	the	data.	The	k-
means	clustering	algorithm	randomly	assigns	each	customer’s	load	shape	to	one	of	k	clusters	and	then	
calculates	 the	 sum	 of	 the	 distance	 between	 each	 load	 shape	 and	 the	 centroid	 of	 the	 cluster	 it	 was	
assigned.	Load	shapes	are	then	reassigned	to	the	nearest	cluster	centroid	and	the	process	 is	repeated	
until	the	variation	within	each	cluster	cannot	be	improved.	This	k-means	clustering	is	used	to	identify	14	
unique	 clusters,	 each	 identifying	 a	 subset	 of	 commercial	 customers	with	 similar	 average	 daily	 energy	
usage	(magnitude)	and	load	shape	(hours	of	use)	throughout	the	year.	The	benefit	of	using	the	cluster	
analysis	 is	 that	 similar	 customer	 groups	 can	be	 created	automatically	 from	 the	AMI	data,	 rather	 than	
relying	on	additional	customer	information	such	as	hours	of	operation,	building	or	business	type	that	is	
often	not	tracked	(or	tracked	accurately)	by	the	utility.		

Next,	 for	 both	 residential	 and	 commercial	 customers,	 every	 day	 of	 the	 study	 period	 is	
characterized	 (binned)	 in	 terms	 of	 the	 weather	 and	 day	 type.	 The	 weather	 groups	 are	 created	 by	
calculating	 cooling	 degree	 hours	 (CDH)	 for	 each	 hourly	 observation	 using	 a	 base	 temperature	 of	 65	
degrees	Fahrenheit,	and	then	taking	the	average	of	these	hourly	values	to	create	a	single	cooling	degree	
day	(CDD)	value	for	each	home	or	business	on	each	day	(i.e.,	each	“customer-day”)	in	the	study	period,	
rounded	up	to	the	nearest	integer.	For	models	covering	the	heating	season,	this	process	is	repeated	to	
assign	 days	 to	 heating	 degree	 day	 (HDD)	 groups,	 again	 using	 a	 base	 temperature	 of	 65	 degrees	
Fahrenheit.7	There	are	a	total	of	25	weather	groups	for	both	CDD	and	HDD,	and	categorizing	days	using	
outdoor	temperature	in	this	manner	explicitly	incorporates	temperature	into	our	modeling	approach.	To	
reflect	 possible	 differences	 in	 energy	 usage	 between	 weekends	 and	 weekdays,	 home-days	 are	 also	
binned	based	on	the	day	type.	Weekends	are	assigned	to	day	type	group	1,	and	weekdays	are	assigned	
to	day	type	group	0.		

Lastly,	all	groups	are	combined	to	create	customer-day	bins	containing	only	one	type	of	home	or	
business	on	one	type	of	day.	These	bins	describe	the	customer-day	groups	in	our	sample	based	on	the	

																																																																																																																																																																																																				
groups)	and	97	commercial	customer	groups	(unique	combinations	of	5	baseload,	12	total	usage,	and	14	load	
cluster	groups).	
6	We	also	will	be	exploring	the	value	of	using	the	cluster	analysis	for	the	residential	customer	as	this	research	
progresses,	but	this	had	not	been	completed	at	the	time	of	this	paper.		
7	An	alternative	model	using	75	degrees	Fahrenheit	to	define	cooling	days	was	explored	in	the	residential	analysis	
but	did	not	have	a	significant	effect	on	the	estimation	results.		
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residential	or	commercial	group,	weather	group	(CDD	and/or	HDD)	based	on	the	average	daily	weather	
value	 described	 above,	 and	 day	 type	 group	 (weekday	 versus	 weekend).	 Each	 participant	 remains	
assigned	to	just	one	customer	group,	but	because	temperature	and	day	type	changes	day-to-day,	each	
customer	has	customer-days	that	are	assigned	to	many	different	bins.		

	
Second	 Stage	 –	 Random	Coefficients	Model.	 For	 the	 next	 stage,	 70	 percent	 of	 the	 sample	 is	

randomly	 selected	 for	 use	 in	 the	 regression	model	 to	 develop	 predicted	 hourly	 load	 shapes	 for	 each	
home-day	bin	using	pre-period	consumption	data.	The	remaining	30	percent	of	the	data	is	set	aside	as	a	
holdout	sample	to	test	the	performance	of	the	predicted	load	shape.	In	this	way,	the	predictive	power	
of	 the	model	 is	 tested	against	data	 that	were	not	used	 to	develop	 the	model.	 For	 the	 residential	and	
commercial	QI	 datasets,	 the	model	 is	 able	 to	 estimate	 load	 shapes	within	 1	 percent	 accuracy	 for	 the	
holdout	samples	in	both	cases.		

For	 the	 residential	 model,	 the	 average	 hourly	 kWh	 value	 is	 computed	 for	 the	 homes	 and	
businesses	 in	 each	 customer-day	 bin	 selected	 for	 modeling.	 These	 average	 hourly	 values	 of	 kWh	
represent	 the	 average	 load	 shape	 for	 each	 customer-day	 bin	 in	 the	 final	 regression	model.	 For	 large	
datasets	 like	the	annual	residential	QI	model,	which	has	thousands	of	observations	in	a	single	bin,	this	
approach	 cuts	 down	 on	 processing	 time	 without	 introducing	 bias	 for	 the	 resulting	 coefficients.	 If	
processing	 time	 is	 not	 a	 concern,	 all	 observations	 can	 be	 included	 in	 the	model,	 as	 we	 did	 with	 the	
commercial	model.		

This	modeling	approach	is	used	as	it	allows	for	the	daily	load	shape	(i.e.,	hourly	kWh	usage)	of	
each	customer-day	bin	to	be	estimated	with	a	simple	linear	regression	while	accounting	for	covariance	
with	 other	 customer-day	 bin	 load	 shapes.	 Unlike	 a	 typical	 fixed	 effects	 regression,	which	 produces	 a	
single	 set	 of	 coefficients	 and	 customer-specific	 constants,	 the	 random	 coefficients	model	 produces	 a	
vector	of	regression	coefficients	for	each	home-day	bin.		

Two	 different	 regression	 specifications	 are	 explored	 for	 this	 stage.	 For	 the	 residential	 QI	
customers,	the	following	model	is	used:		

	

	
	

kW _ Hri,t = β j,i (ChangeHi,t )+
j=1

5

∑ βk,i (ChangeHi,t * Hi,t )+
k=1

5

∑ εi,t

Where :
kW _ Hri,t  = Mean kW consumption for homes in bin i during hour t.

ChangeHi,t  = An array of dummy variables (0,1) representing hourly changepoints, taking a value 
of 1 if an hourly observation falls between two changepoints. In our final model, we 
use the changepoints 5am, 8am, 3pm, 6pm, 8pm, and midnight.

ChangeHi,t * Hi,t  = An array of variables that interact the dummy changepoint variables with the hour 
of the day.

β j,i,βk,i  = Coefficients estimated in the model for homes in bin i.
εi,t  = Random error, assumed normally distributed.
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For	 the	 commercial	 QI	 customers,	 a	 simpler	 specification	 is	 used	 that	 does	 not	 incorporate	
change	points	but	instead	has	a	single	dummy	variable	for	each	hour	of	the	day:8		

			

	 	
	
For	 both	 the	 commercial	 and	 residential	 models,	 the	 coefficient	 estimates	 from	 the	 random	

coefficients	model	in	each	bin	are	then	used	to	estimate	consumption	and	eventually	energy	savings,	as	
explained	below	in	the	third	and	final	stage	of	the	modeling	process.		

	
Third	 Stage	 –	 Savings	 Estimation.	 The	 final	 modeling	 stage	 requires	 that	 load	 shapes	 be	

calculated	for	the	post-period	using	the	results	of	the	 linear	regression	model.	To	accomplish	this,	 the	
post-period	data	are	subjected	to	the	same	binning	process	that	is	used	with	the	pre-period	data.	Each	
individual	home	or	business	remains	in	the	same	customer	energy	usage	group	that	it	was	assigned	to	in	
the	pre-period,	which	helps	isolate	the	effect	of	the	program	intervention	occurring	in	the	post-period	
by	 holding	 the	 expected	 general	 usage	 constant	 throughout	 the	 analysis	 period.	 Next,	 each	 day	 is	
assigned	to	a	weather	group	(by	CDD	and/or	HDD)	and	day	type	group	(weekday	or	weekend).	

After	 assigning	 each	 customer-day	 in	 the	 post-period	 to	 a	 customer-day	 bin,	 the	 predicted	
hourly	 pre-period	 kWh	 values	 for	 each	 customer-day	 bin	 are	 combined	 with	 the	 regression	 model	
results.	 This	 process	 results	 in	 a	 consumption	 estimate	 for	 each	 hour	 of	 the	 post-period	 in	 the	
hypothetical	scenario	where	the	customer	did	not	participate	in	the	program.		

Once	 the	 forecasts	 of	 post-period	 usage	 are	 created	 (based	 on	 the	 pre-period	 consumption	
model	 and	 post-period	 weather	 data),	 they	 are	 compared	 with	 the	 actual	 post-period	 hourly	 kWh	
values.	 This	 is	 essentially	 comparing	 predicted	 consumption	 (which	 assumes	 that	 they	 did	 not	
participate	 in	 the	 program)	 to	 actual	 post-period	 consumption	 on	 days	 with	 the	 same	 weather	
conditions	and	day	types.	When	actual	post-period	consumption	falls	below	the	predicted	hourly	kWh,	
this	 indicates	 energy	 savings	 during	 that	 hour	 attributable	 to	 the	 program.	 In	 essence,	 the	 estimated	
program	savings	 is	 the	difference	between	the	predicted	post-period	hourly	kWh	and	the	actual	post-
period	hourly	 kWh.	 This	 calculation	 could	 also	be	 generalized	 to	use	 long-term	average	weather	data	
(rather	 than	 the	 specific	 post-period	 data	 used	 here)	 to	 create	 load	 shapes	 and	 subsequently	 energy	
savings	estimates	that	assume	more	typical	weather	conditions.		

Note	 that	 this	process	attributes	 the	entire	difference	 in	actual	 versus	predicted	usage	 to	 the	
program	 intervention,	 which	 may	 or	 may	 not	 be	 appropriate	 depending	 on	 the	 program	 or	 market	
context.	It	also	assumes	that	the	existing	site	conditions	are	an	appropriate	baseline—any	adjustments	

																																																													
8	We	have	not	yet	re-run	the	residential	models	using	the	simpler	regression	specification	to	compare	the	results.	
This	will	be	done	as	part	of	the	second	phase	of	the	AMICS	research.	Given	the	accuracy	achieved	already	with	the	
residential	model,	we	do	not	expect	that	a	change	to	the	simpler	regression	specification	will	significantly	improve	
the	prediction	results.		

kWhi,t = β0iH00i,t +β1iH01i,t +β2iH02i,t +β3iH03i,t +... +β23iH23i,t +εi,t

Where:
kWhi,t = Energy consumption, for customers in bin i during time interval t

H00, H01... = An array of dummy variables (0,1) representing the hour of the day 
β0i,β1i...= Coefficients estimated by the model, for customers in bin i

 ε  = Random error, assumed normally distributed
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to	 account	 for	 a	 standard	 practice	 or	 market	 baseline	 would	 need	 to	 be	 made	 outside	 the	 AMICS	
model.9			

Analysis	Results	

The	 results	 of	 the	 AMICS	model	 are	 presented	 here	 for	 both	 the	 residential	 and	 commercial	
sector	applications.	For	the	residential	QI	program,	Figure	2	presents	the	annual	impact	results	from	the	
AMICS	model.	This	graph	compares	the	pre-period	predicted	load	shape	(red	line)	with	the	post-period	
actual	 load	 shape	 (blue),	 averaged	 across	 all	 households.	Whenever	 the	 post-period	 load	 shape	 falls	
below	the	pre-period	load	shape,	this	indicates	that	savings	were	realized	during	that	hour	(green	bars).	
The	 AMICS	modeling	 approach	 results	 in	 approximately	 7	 percent	 annual	 savings	 attributable	 to	 the	
HVAC	 installed	 through	 the	 SCE	QI	 Program.10	Note	 also	 that	 this	 approach	 finds	 that	 the	majority	 of	
savings	is	realized	during	the	later	part	of	the	day,	including	during	the	peak	hour	periods	of	between	2	
p.m.	and	8	p.m.,	highlighted	in	yellow.	The	95	percent	confidence	interval	 is	shown	for	each	estimate,	
and	 the	 error	 of	 the	 hourly	 predictions	 is	 greatest	 during	 the	 late	 afternoon	 and	 early	 evening,	 and	
smallest	during	the	early	hours	of	the	morning.	

	

	
Figure	2.	SCE	QI	overall	annual	post-period	model,	includes	all	months	and	day	types	

Figure	3	shows	the	model’s	predicted	savings	by	season.11	Note	that	this	is	an	important	feature	
of	 the	AMICS	modeling	 approach.	As	 shown	 in	 the	 graph,	most	 of	 the	 residential	QI	 Program	 savings	

																																																													
9	Both	these	issues	are	also	present	with	the	traditional	billing	regression	methods	and	are	not	unique	to	the	
AMICS	model.		
10	It	was	not	possible	to	determine	how	much	of	the	estimated	savings	come	from	the	quality	installation	practices	
versus	the	new	HVAC	equipment	from	the	data	available	for	this	study.	In	order	to	separate	these	impacts,	the	
model	would	need	to	include	a	control	group	sample	of	customers	who	replaced	their	HVAC	system	but	did	not	
use	a	QI	program	contractor	for	the	installation.			
11	Seasons	are	defined	as:	summer	(July-September),	fall	(October-November),	winter	(December-February),	spring	
(March-June).	
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occurred	in	the	summer,	which	had	an	average	daily	savings	of	5.3	kWh	or	12.8	percent.	Fall	and	spring	
had	the	next	highest	savings	with	1.8	kWh	and	1.2	kWh	respectively,	corresponding	to	7.7	percent	and	
4.7	 percent	 of	 the	 average	daily	 kWh	usage.	Despite	 the	 variation	 in	 load	 shapes	 across	 seasons,	 the	
AMICS	model	 is	 able	 to	 produce	 very	 accurate	 estimates	 in	 a	 variety	 of	 conditions.	 This	 ability	 for	 a	
single	modeling	process	to	match	automatically	a	range	of	different	load	shapes	is	a	key	benefit	of	the	
AMICS	approach.		

		

	
Figure	3.	SCE	residential	QI	annual	model	results	by	season	

The	 AMICS	 model	 also	 showed	 promising	 results	 for	 the	 commercial	 QI	 program.	When	 the	
model	 was	 tested	 against	 a	 holdout	 sample	 of	 customers,	 the	 predicted	 average	 daily	 load	 shape	 is	
within	1	percent	of	 the	actual	usage	 for	 those	customers	 that	were	not	used	 to	estimate	 the	original	
model	 (Figure	 4).	 As	 mentioned	 previously,	 31	 of	 the	 very	 largest	 commercial	 customers	 (i.e.,	 those	
above	 4,000	 kWh	 average	 daily	 usage)	 are	 dropped	 from	 the	 analysis	 sample	 to	 improve	 the	model	
prediction	accuracy.	
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Figure	4.	SCE	residential	QI	annual	model	results	by	season	

Figure	5	presents	the	average	annual	impacts	estimates	for	the	commercial	QI	group.	For	each	
hour	of	the	day,	the	actual	energy	use	was	above	the	predicted	value,	resulting	in	no	estimated	savings	
for	this	program.	For	these	particular	customers,	energy	consumption	increased	in	the	post	period,	due	
to	 non-weather	 related	 factors	 that	were	not	 accounted	 for	 in	 the	model.	 Future	modeling	work	will	
explore	 alternative	 binning	 structures	 based	 on	 business	 type	 and	 customer	 size	 that	 may	 help	
incorporate	some	of	these	external	factors	into	the	model.			
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Figure	5.	SCE	residential	QI	annual	model	results	by	season	

Summary	and	Conclusions	

The	results	of	this	exploratory	research	demonstrate	enormous	potential	for	the	AMICS	model	
and	represent	a	significant	and	positive	departure	from	current	approaches	to	analyzing	AMI	data	and	
estimating	program	impacts.	While	analytically	and	conceptually	more	sophisticated	than	the	traditional	
billing	 regression	 model,	 the	 additional	 complexity	 of	 the	 AMICS	 model	 is	 necessary	 to	 take	 full	
advantage	of	AMI	data.	As	utilities	continue	to	migrate	their	customers	to	interval	meters,	we	believe	it	
is	 necessary	 that	 evaluators	 embrace	methods	of	 analysis	 that	 fully	 exploit	 the	 abundant	 information	
contained	 in	 AMI	 data.	 The	multi-stage	 approach	 also	 provides	 an	 efficient	means	 for	 processing	 the	
high	 volume	 of	 AMI	 data	 and	 organizing	 it	 for	 use	 in	 the	 billing	 regression	 model	 in	 a	 manner	 that	
controls	for	important	sources	of	variation.		

The	test	application	of	the	AMICS	model	using	data	from	both	the	residential	and	commercial	QI	
Programs	provided	some	encouraging	results.	First,	the	AMICS	modeling	approach	was	able	to	produce	
very	accurate	predictions	of	load	shapes,	generally	within	1	percent	of	actual	use	for	a	holdout	sample	
for	 both	 commercial	 and	 residential	 customers.	 Second,	 the	 model	 was	 able	 to	 produce	 savings	
estimates	that	were	consistent	with	expectations	for	the	residential	program.	Finally,	the	predicted	load	
shapes	 and	 impact	 estimates	 for	 the	 residential	 program	 at	 the	 daily	 and	 seasonal	 level	 were	 also	
consistent	 with	 expectations	 and,	 in	 the	 case	 of	 the	 seasonal	 models,	 were	 able	 to	 account	 for	
significant	differences	in	load	profiles	across	periods	in	the	residential	sector.	While	the	model	was	able	
generally	to	match	the	load	shapes	for	the	commercial	customers,	it	was	not	successful	in	producing	any	
impact	estimates.	

Perhaps	the	greatest	benefit	of	the	AMICS	model	is	the	ability	to	estimate	impacts	for	different	
customer	 types	 in	 an	 efficient	 manner.	 This	 is	 accomplished	 through	 an	 automated	 categorization	
process	 (i.e.,	 bin	 assignments)	 that	 controls	 for	much	 of	 the	 variation	 across	 customers	 and	weather	
conditions.	 If	only	annual	 impact	estimates	are	needed,	then	the	fixed	effects	model	 is	 likely	sufficient	
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for	 estimating	 savings.	 However,	 a	 single	 annual	 savings	 number	 does	 not	 take	 full	 advantage	 of	 the	
information	 provided	 by	 the	 AMI	 data.	 The	 AMICS	 modeling	 approach,	 in	 contrast,	 uses	 the	 AMI	
information	to	create	customer	subcategories	that	help	control	for	significant	amounts	of	variation	and	
ultimately	 allows	 for	 accurate	 load	 shape	 predictions.	 Once	 this	 process	 is	 completed,	 it	 provides	 a	
flexible	method	that	enables	different	load	shapes	(and	subsequently	impact	estimates)	to	be	developed	
easily	for	a	wide	range	of	different	time	periods.		

Future	work	will	focus	on	refining	the	AMICS	model	for	commercial	customers.	While	the	largest	
commercial	 customers	 may	 still	 require	 individual	 AMI	 data	 analysis,	 the	 performance	 of	 the	 AMICS	
model	with	the	other	commercial	customers	is	promising	as	the	model	 is	able	to	estimate	very	closely	
the	 load	 shapes	 for	 a	holdout	 sample	of	 customers.	Additional	work	 is	underway	 to	 create	additional	
refinements	 of	 the	 model	 based	 on	 customer	 size	 and	 business	 type.	 A	 separate	 analysis	 is	 also	
underway	 that	will	utilize	HVAC	end-use	metered	data	combined	with	 the	whole-building	AMI	data	 in	
the	AMICS	model	to	estimate	both	total	consumption	and	the	HVAC	portion	of	total	load.	
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