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ABSTRACT 

As smart thermostats become more attractive to program administrators, evaluators are striving 
to find the most appropriate methodologies to assess both demand response and energy impacts 
associated with these devices. In the last handful of years, many utilities have been offering smart 
thermostats to customers as pilot initiatives, providing evaluators with an array of opportunities to test 
the accuracy, bias and costs of assessing impacts using differing methodological approaches, as well as 
the intersection of both energy efficiency and demand response impact approaches.  Results from these 
pilot efforts help to inform future program design (e.g., how and when to call demand response events, 
and for whom; the types of cycling strategies to employ; how behavior can affect energy impacts; and 
internal and external validity of estimates).  

In this paper, we provide estimated demand response impacts for a residential smart thermostat 
pilot using two different methodologies – a randomized controlled trial (or experimental design) and an 
quasi-experimental design. The results provide insights as to how to best design demand response 
program event protocols, balancing the program implementation goal of achieving as much demand 
reduction as possible with the evaluation goal of ensuring high degrees of accuracy and limited bias.   

Introduction 

Randomized control trials (RCTs) are widely regarded as the gold standard of impact evaluation, 
yet, program administrators cannot always implement them due to legal, financial, or other 
considerations. These problems are particularly acute for demand response (DR) programs, which are 
typically offered due to capacity constraints. Excluding customers to create a control group could result 
in a failure to reduce enough demand from the grid during peak periods. Consequently, evaluators must 
frequently estimate program impacts without a control group. It is therefore critical to understand how 
the choice of baseline estimation methods affects demand reduction estimates, and which estimation 
method is best to use under different circumstances. 

This paper uses data from a 2015 evaluation of a smart thermostat pilot to evaluate two 
approaches to estimating demand response program impacts. The pilot program included 1,440 
residential participants. Although participants opted into the program, we randomly assigned participants 
to treatment and control status during individual demand response events. Because we deployed the pilot 
events as an RCT, we compared the results from a non-RCT approach to the unbiased savings estimates 
from the RCT.  

Specifically, this paper compares the performance of a common impact evaluation method: 
Mahalanobis Distance Day Matching using linear fixed effects regression (LFER) to an RCT design. In 
addition to evaluating the performance of this analytic approach, this paper pays attention to the relative 
performance under a very common condition: when event days are much hotter than most or all 
comparison days.  

This has important implications not only for evaluators tasked with calculating impacts for 
programs that do not use RCTs, but also for utilities and program implementers who must decide whether 
delivering a program as an RCT is worth the cost. It also provides insight into how much error, from both 
bias and accuracy, we can expect from these non-RCT-based methods. A better understanding of the 
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performance of non-RCT evaluations methods will help ensure that evaluators’ results and 
recommendations truly help “make ambitious reductions real”.  

Bring Your Own Smart Thermostat Pilot  

Opinion Dynamics evaluated a residential smart thermostat pilot, which offered customers an 
incentive for participating in DR events via a web-addressable smart thermostat. The objective of the pilot 
was to identify whether there were sufficient demand response, energy efficiency and bill savings 
associated with the pilot as an alternative to the utility’s existing load control switch technology. Overall, 
the evaluation assessed kWh, kW, load shift and bill savings to inform future program design.  

The Pilot employed a Bring Your Own Thermostat (BYOT) delivery model, which uses vendor-
driven marketing approaches to achieve customer enrollment needs. The Pilot offered over ten different 
thermostat devices, via multiple vendors, who used their own marketing strategies (often varied and 
diverse) to enroll customers into the Pilot. The Pilot offered an incentive of $100 for a new thermostat, as 
well as an incentive for customers with an existing thermostat to participate in DR events.  

Overall, a little under 1,500 customers enrolled in the Pilot, which were substantially fewer 
participants than anticipated. In total, the program administrator called nine events during the summer 
event season, which ran from May through September 2015, with a maximum of 40 hours of event 
participation per participant. Table 1 provides a list of the DR events called during the Pilot period. 

Table 1. Demand Response Events Called during Pilot Period 

Event Number Event Date Event Time Temperature  

1 July 7, 2015 2–6 PM 75°F 

2 July 10, 2015 2–6 PM 77°F 

3 July 28, 2015 2–6 PM 86°F 

4 July 29, 2015 2–6 PM 88°F 

5 August 18, 2015 2–6 PM 78°F 

6 September 1, 2015 2–6 PM 81°F 

7 September 2, 2015 2–6 PM 81°F 

8 September 16, 2015 2–6 PM 82°F 

9 September 18, 2015 2–6 PM 75°F 

 
The evaluation used Advanced Metering Infrastructure (AMI) data at a sub-hourly level for the 

summer event period. We excluded from the analysis the 15% of participants without AMI data.  

Study Methodology – It’s All About the Counterfactual… 

Best practice suggests delivering programs using an experimental design, using random 
assignment to treatment and control groups (an RCT). This approach simplifies the analysis and increases 
confidence in the estimate (Rubin 1974, Shadish, 2002). However, random assignment reduces the 
possible demand reductions for the program because some participants will not participate in the event 
(e.g., the control group). RCT designs therefore, can be expensive and time-consuming, are sometimes 
difficult to implement well, and are often impossible in real-world contexts. In addition, while a well-
designed and implemented RCT will inspire confidence in the program impacts, the results may not apply 
more generally to future populations.  

Quasi-experimental designs provide an alternative approach to estimating impacts, but they also 
have drawbacks. Using a quasi-experimental approach means that we must identify comparison group 
customers that are as similar as possible to program participants in aspects related to energy consumption 
and program participation. Identifying these customers is difficult, and can often produce biases that are 
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difficult to quantify. When selecting a comparison group, we must match or control for a host of threats 
to validity, including History, Selection, Maturation, Statistical Regression to the Mean, Testing, and 
Instrumentation (Campbell and Stanley 1963).  

Clearly, the ideal situation for estimating DR event impacts is to randomly assign customers to 
either a treatment or a control group, which would mean that we use the same (event) days as points of 
comparison. This approach eliminates bias from self-selection by participants and from different 
comparison days producing valid, unbiased, estimates.  This paper, by having an RCT, allows our team to 
test quasi-experimental designs against RCT results.  This effort is consistent with recent energy efficiency 
evaluation efforts that have sought to quantify the size and direction of biases associated with using an 
experimental or quasi-experimental design (Spurlock 2017, Smith 2015). 

For this study, we estimated ex post demand reduction impacts for a smart thermostat pilot using 
two distinct approaches. The first is an experimental design (RCT) using a difference-in-difference (DID) 
model for customers randomly assigned to treatment and control groups for each event. The second 
approach uses a quasi-experimental design, Mahalanobis distance day matching with an LFER, to estimate 
demand reductions. We describe the two research designs below Table 2.  
 
Table 2. Overview of Research Design, Matching and Modeling Approaches Employed 

Research Design Matching Approach Modeling Approach Control  

Experimental Random Assignment Difference-in-Difference (DID) Event Day 

Quasi-Experimental Mahalanobis Distance Day Matching LFER  Similar Day 

Experimental Design  

Opinion Dynamics developed an RCT to estimate DR impacts of events called during the peak 
summer period of 2015. In this approach, for each event called, one half of the enrolled customers served 
as a control group and did not participate in a DR load control event. For the next event, those control 
group customers received the event and those who received the first event served as control. This is a 
trade-off between maximizing total DR impact and being able to provide accurate, unbiased estimates of 
per-participant DR impacts. Table 3 displays the treatment and control assignment, with one-quarter of 
the participants assigned to one of four groups. In each event, two groups were treatment and two 
control, which was varied by event. We randomized into four groups so that we could estimate 
consecutive day impacts using a crossover design. 

Table 3. Group Assignment for Each Event 

 Group 

Event A B C D 

1 Treatment Control Treatment Control 

2 Treatment Control Control Treatment 

3 Control Treatment Control Treatment 

4 Control Treatment Treatment Control 

5 Treatment Control Treatment Control 

6 Treatment Control Control Treatment 

7 Control Treatment Control Treatment 

8 Control Treatment Treatment Control 

9 Treatment Control Treatment Control 



2017 International Energy Program Evaluation Conference, Baltimore, MD 

The RCT design allows for a simple DID modeling approach for the demand impact analysis. 
Because customers were randomly assigned into treatment and control groups, the average control group 
usage during the event is a valid counterfactual baseline for what the treatment group’s usage would have 
been had they not been selected to participate. As a result, we can calculate savings simply by subtracting 
average hourly treatment group usage from control group usage during each event hour.  

Quasi-Experimental Design  

Given that we had estimated impacts using an experimental design, we saw an opportunity to 
leverage the same data to estimate impacts using quasi-experimental approach to identify the size and 
direction of the bias associated with this approach, and to identify any tradeoffs with either evaluation 
approach. In a quasi-experimental design for DR events, we match similar days using a reference load day 
approach. Reference load days provide information about what participants' consumption would have 
been on event days if the event were not called. For this reason, it is important for reference days to be 
as similar as possible to the event days. To select reference days that are most similar to event days, we 
used Mahalanobis Distance Day Matching to select reference days with weather profiles that are closest 
to the event days.  

Not all days make good proxies for an event day. Cool days, when air conditioning is not used, for 
instance are not comparable to the hottest days, when events are called. The reference day values 
simulate the load the customer would have had if the DR event had not been called, also known as the 
counterfactual or baseline. Using this matching technique, we selected non-event days that best matched 
the hourly profile of each event day. 

Mahalanobis Distance Day Matching minimizes the difference between the event and non-event 
day temperatures at each hour, correcting for the measured variation in temperature at that hour and 
the correlation of temperature between hours. To estimate baseline usage correctly, the matched days 
must cover the range of temperatures experienced on event days (black) and non-event days (gray). 
Figure 1 provides event day and non-event day temperatures prior to matching, while Figure 2 provides 
Mahalanobis Distance Day Matching event and matched non-event day temperatures, respectively.  
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Figure 1. Event Day and Non-Event Day Temperatures before Matching  

 

Figure 2. Event Day and Non-Event Day Temperatures after Mahalanobis Matching 
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We also conducted analyses to derive insights as to the effects of model estimates and uncertainty 
associated with well-matched versus poorly-matched reference days. To achieve this, we removed the 
best comparison days from the data and ran our analysis without those days.  Figure 3 provides the event 
and matched non-event day temperatures using less than ideal candidates for reference load days.  

Figure 3. Event Day and Non-Event Day Temperatures after Mahalanobis Matching -- Poorly Matched 

 

For the quasi-experimental analysis, we estimated demand response impacts using a LFER 
modeling approach. This model produces demand reduction estimates associated with each day and hour, 
as well as an average demand reduction for all events called during the event season. It also accounts for 
all time-invariant, household-level factors affecting energy use without explicitly measuring those often-
immeasurable factors and entering them explicitly in the models. These fixed-effects are contained in a 
household-specific intercept.  

We selected the LFER model specification to best predict reference load during event days. The 
selected model incorporates weather variables (e.g., cooling degree hours (CDH)), as weather is one of 
the major predictors of energy consumption for AC use. The model also includes the hour of the day, as 
time of day is highly predictive of usage. We specified a broad range of models to ensure that the chosen 
model estimates baseline usage during events as accurately as possible. Equation 1 in the Appendix shows 
the final model that we used to estimate hourly demand reductions. 

Study Results – Methods Matter… 

Below we provide results from our study. Importantly, these demand reduction results are 
specific to a particular service territory with unique energy consumption, climate zone and housing stock, 
and should not be applied to other jurisdictions. 

Table 4 provides the results of both research designs for ease of comparison. Both well-matched 
and poorly-matched quasi-experimental demand impact estimates are biased low when compared to the 
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RCT results, though the well-matched weather day’s model is less biased. This result is unsurprising given 
that the RCT does a better job at identifying the best control, e.g., the actual weather, humidity, and day, 
on the day of the event. Further, those with poorly-matched days (e.g., with cooler temperatures) produce 
the lowest per thermostat savings (0.10 kW per hour). An experimental design produces the least biased, 
most accurate impact results, suggesting that program administrators should strongly consider 
incorporating these designs into their smart thermostat program evaluations.  

Table 4. Summary of Ex Post Impact Results from Pilot, by Research Design 

Research 
Design 

Matching Approach 
Modeling 
Approach 

Reference 
kW 

Per Thermostat 
Kw Demand 
Reduction 

Savings 

Standard 
Error 

95% CI Daily 
Savings 

Lower Upper 

Experimental Random Assignment DID 1.88 0.45 0.01 0.42 0.48 

Quasi-
Experimental 

Well-Matched Mahalanobis 
Distance Day Matching 

LFER 1.75 0.37 0.01 0.35 0.40 

Poorly-Matched 
Mahalanobis Distance Day 
Matching 

DID 1.48 0.10 0.01 0.08 0.13 

Figure 4 and Figure 5 provide a visual depiction of the demand reductions that occurred during an 
average event for well-matched and poorly-matched estimates. The black line reflects actual observed 
energy consumption on an hourly basis, and the gray line reflects the estimated baseline consumption 
for a non-event day. The gray bar is the event period. As can be seen, the difference between the black 
and gray lines in Figure 5 is smaller than in Figure 4. 

Figure 4. Average 2015 Summer Ex Post Demand Response Event Impacts (Well Matched) 
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Figure 5. Average 2015 Summer Ex Post Demand Response Event Impacts (Poorly Matched) 

 

We tested a range of models before choosing a final specification. The primary method for 
evaluating the validity of a LFER model is to compare actual, logged runtime to the runtime predicted by 
the model. When actual and modeled usage are similar, especially on non-event days with weather similar 
to event days, it shows that the model is effectively estimating the reference load.  

The figures below compare actual reference runtime from the RCT control on event days to the 
event day reference predicted by models. The actual runtime is higher than that from both models, but 
the well-matched quasi-experimental model does a much better job of approximating reference load than 
the model based on poorly matched days.  

In addition to predictive power, we also considered adjusted R-squared and Akaike’s Information 
Criterion (AIC)1 in model selection. We chose models that maximized adjusted R-squared and minimized 
AIC. We used bootstrapped variance estimation to adjust confidence intervals for heteroscedasticity and 
autocorrelation. 

                                                           
1 AIC balances predictive power and model parsimony, and thus helps guard against overfitting. For more, see: Palin 
and Haugh. “Eliminating the Guesswork: The Information Theoretic Approach to Model Selection.” 2007 
International Energy Program Evaluation Conference, Chicago, IL. 
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Figure 6. Average RCT Reference vs Modeled Reference Event Day Usage 

 

Conclusion 

This analysis confirms that it is possible to design an effective RCT for a thermostat DR program, 
and that the RCT experimental design produces the least biased, most accurate, demand reduction 
results, without substantial overhead due to design or implementation. As a result, we recommend that 
program implementers utilize an RCT approach for event days, where feasible.  

This approach can be effective when the program is being offered as a pilot or when reducing the 
total number of participants who receive a load control signal during an event will not jeopardize the load 
reduction required for peak system emergencies. It can also be offered as a way to reduce event 
participation requirements, possibly increasing volunteer participation or mitigating opt-outs during 
events. Finally, if program administrators offer smart thermostats from multiple vendors or thermostat 
device types, or utilize distinct cycling strategies, an RCT can help to increase the accuracy of demand 
reduction estimates with smaller population sizes.  

This analysis also suggests that when using a quasi-experimental design, poorly-matched (or 
cooler temperature) weather days may produce an underestimation of overall program impacts. This is 
most likely due to events falling on some of the hottest days of the season, which leaves mostly cooler 
days with lower demand as comparison days. The regression model attempts to correct for differences in 
weather and other effects, but because there are many days hotter than the event days, the models 
underestimate baseline consumption.  

It is clear from these results that poorly matched comparison days with much lower temperatures 
lead to more bias and reduced impact estimates. This bias shows that carefully selecting comparison days 
is very important to accurately predicting reference load. One solution is to call test events during average 
weather days to mitigate this issue. In addition, evaluators should report model validation statistics to 
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demonstrate how well the weather days matched event days, and what types of interpretations are 
appropriate based on the modeled results. 

When quasi-experimental results are biased low compared to the RCT results, evaluators 
underestimate both impacts and cost-effectiveness. This could potentially lead to cancelling or reducing 
the size of a program that was performing well. The opportunities to claim savings (if estimates are biased 
low), or risks to the grid (if estimates are biased high and the program is in a capacity constrained area) 
are real issues that program planners and administrators continue to face with load management efforts.  

Results from these pilot efforts can also help to inform future program design (e.g., how and when 
to call demand response events, and for whom; the types of cycling strategies to employ; how behavior 
can affect energy impacts; and internal and external validity of estimates). RCT designs may also better 
support understanding participant engagement with events (such as opt-out behavior or thermostat 
usage), that can contribute to optimizing program messaging and targeting for future event seasons 
because it can also establish a counterfactual for what similar participants would have done on an event 
day without an event being called. 

When attempting to balance an RCT design with a quasi-experimental design, consider the total 
number of participants in the program, the overall contribution to the load, and develop control groups 
that are appropriately scaled to estimate impacts accurately. We encourage evaluators to work with 
program implementers prior to any event season to assess whether or not it is appropriate and feasible 
to develop an RCT experimental design in support of estimating demand reductions for a pilot or program. 
This requires additional upfront work to develop the random assignment of customers, and work with 
implementers to maintain fidelity to the design during the event season. 
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Appendix 

Below we provide our estimating equation for the ex post regression model as well as model 
validation results. 

Estimating Equation 

Equation 1: Ex Post Regression Model 

𝑘𝑤𝑖𝑡 = 𝜇0 + 𝛼𝑖 + 𝛽𝑒𝑣𝑒𝑛𝑡 ∙ 𝐸𝑣𝑒𝑛𝑡 + ∑ 𝛽𝑟𝑒𝑔𝑖𝑜𝑛 𝑟 ∙ 𝑅𝑒𝑔𝑖𝑜𝑛𝑟

4

𝑟=1

+ ∑ 𝛽𝑒𝑣𝑒𝑛𝑡 𝑟𝑒𝑔𝑖𝑜𝑛 𝑟 ∙ 𝐸𝑣𝑒𝑛𝑡 ∙ 𝑅𝑒𝑔𝑖𝑜𝑛𝑟

4

𝑟=1

+  𝛽𝐶𝐷𝐻 ∙ 𝐶𝐷𝐻𝑡 + ∑ 𝛽𝑟𝑒𝑔𝑖𝑜𝑛 𝑟 𝑐𝑑ℎ 𝑡 ∙ 𝑅𝑒𝑔𝑖𝑜𝑛𝑟 ∙ 𝐶𝐷𝐻𝑡 + 

4

𝑟=1

∑ 𝛽ℎ𝑜𝑢𝑟 ℎ ∙ 𝐻𝑜𝑢𝑟ℎ

23

ℎ=1

+ ∑ 𝛽𝑒𝑣𝑒𝑛𝑡 ℎ𝑜𝑢𝑟 ℎ ∙ 𝐸𝑣𝑒𝑛𝑡 ∙ 𝐻𝑜𝑢𝑟ℎ

23

ℎ=1

+ ∑ 𝛽𝑒𝑣𝑒𝑛𝑡 ℎ𝑜𝑢𝑟 ℎ ∙ 𝐸𝑣𝑒𝑛𝑡 ∙ 𝐻𝑜𝑢𝑟ℎ

23

ℎ=1

∙ 𝐶𝐷𝐻𝑡

+ ∑ 𝛽𝑚𝑜𝑛𝑡ℎ 𝑚 ∙ 𝑀𝑜𝑛𝑡ℎ𝑚

9

𝑚=6

+ ∑ ∑ 𝛽𝑚𝑜𝑛𝑡ℎ ℎ𝑜𝑢𝑟 𝑚ℎ ∙ 𝑀𝑜𝑛𝑡ℎ𝑚 ∙ 𝐻𝑜𝑢𝑟ℎ

23

ℎ=1

9

𝑚=7

+ 𝑢𝑖 + 𝜀𝑖𝑡   

Where: 

𝑘𝑤𝑖𝑡 = Hourly energy consumption – load in hour t for customer i (kWh/hr) 

𝜇0 = Overall mean energy usage 

𝛼𝑖 = Participant-specific deviation from mean energy usage  

𝑢𝑖 = Participant-specific error 

𝜀𝑖𝑡= Observation-specific error 

𝐸𝑣𝑒𝑛𝑡 = Indicator variable for event day for those participants in the treatment group 

𝐻𝑜𝑢𝑟 = Set of 23 indicator variables for the hours of the day 

𝑀𝑜𝑛𝑡ℎ = Set of 4 indicator variables for the months of the program (May–Sept) 

𝑅𝑒𝑔𝑖𝑜𝑛 = Set of 4 indicator variables for region 

𝐶𝐷𝐻 = Cooling degree hours 
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